A Model for Ethnicity, Diseases of Aging, and Cognitive Impairment

Dan Mungas, Ph.D.
University of California, Davis
Overview

• Challenges in assessing cognitive impairment in ethnic minorities
• General model of determinants of cognitive test scores - Implications for cognitive impairment
• Empirical applications of model
 ▪ Separating age, education, and brain effects
 ▪ Deconstructing ethnicity effects
 ▪ Separating demographic and disease effects
Background

• Reasons to study ethnic minorities
 ▪ Practicality - Need for scientific knowledge of diseases affecting cognition in these large (and growing) populations
 • Can be done with homogenous groups
 ▪ Generality - Better understanding of general mechanisms of cognitive impairment that apply across older people of diverse backgrounds
 • Requires heterogeneity
Ethnicity and Cognition

- Well established finding that ethnic minorities have lower average performance on neuropsychological tests
- Cutpoints based upon Caucasian samples result in high false positive rates in minority populations
- Historical context of abuses of IQ testing in minority populations
- Raises important question about measurement bias when using cognitive tests with minority elders
Ethnicity, Cognitive Impairment and Aging

- Context of cognitive assessment in older patients
 - To identify and monitor cognitive impairment associated with diseases of aging
- Questions / Challenges
 - How do we measure cognitive changes of dementing illnesses in ethnically diverse groups?
 - How do non-disease correlates of ethnicity influence sensitivity of cognitive measures to disease effects?
Simple Model of Cognitive Test Performance

- Disease
- Ability
Psychometric Theory

• Definition of ability
 ▪ Capacity to successfully respond to test items
 ▪ Net result of all genetic and environmental influences
 ▪ Measured by scales composed of homogenous items
 ▪ In neuropsychology, domains of interest defined by relationships with brain structure and function
More Complete Simple Model of Cognitive Test Performance

- Disease
 - Ability
 - Item 1
 - Item 2
 - Item 3
 - Item 4
Expanded Model of Cognitive Test Performance

Environment Disease Genes

Ability

Item 1 Item 2 Item 3 Item 4
Expanded Model of Cognitive Test Performance

Environment → Disease → Genes → Ability → Item 1 → Item 2 → Item 3 → Item 4
Expanded Model of Cognitive Test Performance with Aging Effects

- Aging
 - Environment
 - Disease
 - Genes
 - Ability
 - Item 1
 - Item 2
 - Item 3
 - Item 4
Model of Ethnicity Effects on Cognitive Test Performance

Ethnicity

Aging

Environment

Disease

Genes

Ability

Item 1

Item 2

Item 3

Item 4

UC Davis Alzheimer’s Disease Center
Implications of Model

- Cognition is complexly determined
- Ethnicity effects are mediated by measurable variables
 - Some known
 - Others to be discovered
- Disease effects can be separated from non-disease influences on cognition
Questions Posed by Model

• Is cognition similarly structured in different ethnic groups?
• Are disease effects on cognition the same in different ethnic groups?
• Are pathways linking environment, genes, disease, and cognition the same in different ethnic groups?
Comparative Study of Determinants of Cognitive Test Performance

Ethnic Group 1

- Aging
- Environment
- Disease
- Genes
- Ability

Item 1 Item 2 Item 3 Item 4

Ethnic Group 2

- Aging
- Environment
- Disease
- Genes
- Ability

Item 1 Item 2 Item 3 Item 4

UC Davis Alzheimer’s Disease Center
Recruitment Plan

Community Screening
Full Range of Cognition

Clinic Referral
Presenting Cognitive Problems

Normal

Memory Impaired

Non-Memory Impaired

Clinical Exam & MRI

UC Davis Alzheimer’s Disease Center
Cognitive Assessment

- Spanish and English Neuropsychological Assessment Scales (SENAS)
 - New Scales
 - Neuropsychologically relevant domains
 - Psychometrically matched
 - English and Spanish
 - Domains within English and Spanish
Age, Education, and Brain Structure

UC Davis Alzheimer’s Disease Center
Age, Education, and Brain Structure
Age, Education, and Test Validity
MRI as Proxy for Disease

- MRI Variables
 - White Matter Hyperintensity Volume
 - Total Brain Matter Volume
 - Hippocampal Volume
Age, Education, and Test Validity

UC Davis Alzheimer’s Disease Center
Sample* Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Age Mean (s.d.)</th>
<th>Education Mean (s.d.)</th>
<th>Gender % Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>White n = 83</td>
<td>76.8 (8.2)</td>
<td>14.2 (3.1)</td>
<td>51.8</td>
</tr>
<tr>
<td>Minority ** n = 113</td>
<td>72.9 (7.1)</td>
<td>9.4 (5.5)</td>
<td>69.0</td>
</tr>
</tbody>
</table>

* Community dwelling, Normal, MCI, Demented
** Hispanic - n = 69, Black - n = 38, Other - n = 6
MRI Effect Sizes and Age and Education Adjustment - Full Sample (n=196)
MRI Effect Sizes and Age and Education Adjustment - Minorities (n=113)
MRI Effect Sizes and Age and Education Adjustment - Whites (n=68)
Executive Function, MRI, Age & Education
Bivariate Effects (R-Squared)
Executive Function, MRI, & Education
Bivariate and Multivariate Effects (R-Squared)
Executive Function, MRI, Age & Education
Bivariate and Multivariate Effects (R-Squared)
Episodic Memory, MRI, Age & Education
Bivariate and Multivariate Effects (R-Squared)

Education 0.06 MRI 0.34 Age 0.00

Episodic Memory

UC Davis Alzheimer’s Disease Center
Age and Education Influences on MRI - Cognition Relationships

• It is possible to separate disease effects from extraneous influences
• MRI effects on cognition can obscured by demographic effects on test performance, especially when
 • Demographic relationship with test score is larger than relationship with disease
 • Substantial heterogeneity of demographic variable in population of interest
Demographic Influences on Cognition
Sample Characteristics - Community Sample

<table>
<thead>
<tr>
<th></th>
<th>Age Mean (s.d.)</th>
<th>Education Mean (s.d.)</th>
<th>Gender % Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>White N = 272</td>
<td>73.3 (7.5)</td>
<td>14.2 (3.2)</td>
<td>60.6</td>
</tr>
<tr>
<td>Black N = 277</td>
<td>73.0 (7.3)</td>
<td>13.2 (3.0)</td>
<td>62.5</td>
</tr>
<tr>
<td>Hispanic N = 355</td>
<td>70.3 (7.1)</td>
<td>6.1 (4.7)</td>
<td>67.0</td>
</tr>
</tbody>
</table>
Background

- Average differences between Blacks and Whites can be explained by group differences in education and reading
 - e.g. Manly et al., 2002, 2004
 - Reading a proxy for quality of education
 - Small acculturation effects independent of reading
- Average differences between Hispanics and Whites can be explained by education and language use
 - Mungas et al., 2005
 - English --> higher test scores, Spanish --> lower scores
 - Small acculturation effects independent of language
Determinants of Cognitive Test Performance

Ethnic Group 1
- Aging
- Environment
- Disease
- Genes
- Ability
 - Item 1
 - Item 2
 - Item 3
 - Item 4

Ethnic Group 2
- Aging
- Environment
- Disease
- Genes
- Ability
 - Item 1
 - Item 2
 - Item 3
 - Item 4
Semantic Memory
Mean Ethnic Group Differences

Age + Gender

Ability Score (Standard Deviation units)

White (n=272) Black (n=277) Hispanic (n=355)

Ethnicity

UC Davis Alzheimer’s Disease Center
Semantic Memory
Mean Ethnic Group Differences

UC Davis Alzheimer’s Disease Center
Semantic Memory
Mean Ethnic Group Differences

UC Davis Alzheimer’s Disease Center
Semantic Memory
Mean Ethnic Group Differences

UC Davis Alzheimer’s Disease Center
Episodic Memory
Mean Ethnic Group Differences

- Age + Gender
- Age + Gender + Educ + Lang
- Age + Gender + Educ + Lang + Read

Ability Score
Standard Deviation units

- White (n=272)
- Black (n=277)
- Hispanic (n=355)

UC Davis Alzheimer’s Disease Center
Ethnicity, Diagnosis, and Cognition
Determinants of Cognitive Test Performance

Ethnic Group 1

Environment → Disease → Genes

Ability → Item 1 → Item 2 → Item 3 → Item 4

Ethnic Group 2

Environment → Disease → Genes

Ability → Item 1 → Item 2 → Item 3 → Item 4
Sample Size - Clinical Evaluation

Community + Clinic

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>56</td>
<td>45</td>
<td>55</td>
<td>156</td>
</tr>
<tr>
<td>MCI</td>
<td>64</td>
<td>33</td>
<td>32</td>
<td>129</td>
</tr>
<tr>
<td>Demented</td>
<td>23</td>
<td>14</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>92</td>
<td>114</td>
<td>349</td>
</tr>
</tbody>
</table>
Semantic Memory by Diagnosis
(Age, Gender, Education, Language, Reading Adjusted)

UC Davis Alzheimer’s Disease Center
Episodic Memory by Diagnosis
(Age, Gender, Education, Language, Reading Adjusted)
Ethnic Differences and Test Validity

• Sensitivity to diagnostic group differences is a prerequisite for a measure of cognitive impairment
 ▪ Equivalent sensitivity across ethnic groups is an added advantage for comparative studies
 ▪ Differences in mean scores across ethnic groups can lead to differential validity (bias) for detecting cognitive impairment in cross-sectional assessment
 • Importance of understanding and deconstructing ethnic difference
Conclusions

- Cognition in older persons is complexly determined
- Cognitive impairment associated with disease occurs in the context of remarkable heterogeneity of normal cognitive function
- Ethnicity contributes substantially to normal heterogeneity
- Appropriate studies can separate disease effects from demographic heterogeneity
Collaborators

• UC Davis
 ▪ Charles DeCarli, M.D.
 ▪ Bruce Reed, Ph.D.
 ▪ Sarah Tomaszewski Farias, Ph.D.
• UC Berkeley
 ▪ William Jagust, M.D.
• University of Michigan
 ▪ Mary Haan, Dr. Sc.

• University of Washington
 ▪ Paul Crane, M.D.
• Hebrew Center for Rehabilitation of the Aged
 ▪ Richard Jones, Ph.D.
Funding Sources

- NIA
 - AG10220 (Mungas)
 - AG10129, AG021028 (DeCarli)
 - AG12975 (Haan)