Selective Vulnerability of von Economo Neurons in Frontotemporal Dementia

William W. Seeley, MD
Assistant Professor of Neurology
UCSF

August 3, 2007
Why study selective vulnerability?

Dementia diagnosis and treatment

- **Dx:** Selective vulnerability dictates early, disease-specific symptoms & signs

- **Rx:** Global targeting of aberrant proteins may not be enough
 - Need to stop disease early, while confined to most vulnerable cells and circuits…may prevent downstream degeneration
 - Vulnerable neurons may express susceptibility or response genes that relate to pathogenesis and impact treatment
 - Invulnerable neurons may employ cell-protective mechanisms that could be used to rescue vulnerable cells
 - Disease-related proteins have normal functions. Systemic treatments may confer toxicity.
Why study selective vulnerability?

Neuroscience

- Selective vulnerability provides an opportunity to study the function of specific cells and circuits targeted by disease

- Selective vulnerability provides a window into human brain systems that cannot be modeled in laboratory animals
Frontotemporal dementia

Behavioral variant

Language variants

Semantic Dementia

Progressive Nonfluent Aphasia

Also:
“Frontal variant” FTD
“FTD”
Frontotemporal lobar degeneration (FTLD)

- Behavioral variant
- Semantic Dementia
- Progressive Nonfluent Aphasia

- Tau-positive
 - Pick’s
 - CBD
 - PSP

- Tau-negative
 - FTLD-U TDP-43
 - FTLD-MND TDP-43
BvFTD social cognitive deficits: Representations of self and others

- Self-concept
 Miller 2001

- Self-conscious emotion
 Sturm 2006

- Empathy
 **Rankin 2005, 2006

- Social self-monitoring
 **Rankin unpublished

- Theory of Mind
 **Gregory 2002
 Snowden 2003
 Lough 2006

- Metacognitive judgment
 **Eslinger 2005

- Moral reasoning
 **Mendez 2005
 Lough 2006
Early bvFTD network: Very mild dementia (CDR 0.5)

9 bvFTD imaging studies (PET/SPECT/MRI)

132 bvFTD patients
166 controls

Pregenual ACC/rmPFC
Frontal insula
Frontal pole

Activation likelihood estimate
Early bvFTD network: very mild dementia (CDR 0.5)

Voxel-based morphometry
P < 0.05, corrected

N = 15

Seeley, Crawford et al, *Arch Neurol*, in press
Very mild bvFTD:

CDR = 0.5

P<0.05 FWE corrected

N = 15
Mild bvFTD:

CDR = 1

P<0.05
FWE corrected

N = 15
Moderate-to-severe bvFTD:

CDR = 2-3

P<0.05 FWE corrected

N = 15
In healthy subjects, baseline low frequency fMRI BOLD signal fluctuations in R FI are correlated with...

An ACC-FI network in healthy humans?

Seeley, Menon et al, J Neurosci 2007
Early bvFTD targets an ACC-FI paralimbic network

R FI intrinsic connectivity

bvFTD CDR 0.5 atrophy
Very mild FTD
CDR 0.5

Cytoarchitecture

von Economo and Koskinas, 1925
von Economo Neurons

- 1881 Betz
- 1899 Cajal
- 1925 von Economo
- 1927 Rose
- 1979 H. Braak
- 1995 Nimchinsky & Hof
Von Economo neurons: Phylogeny

von Economo 1925 Nimchinsky *PNAS* 1999
Structure
- Simplified architecture
- Layer Vb, Fl>>ACC
- Columnar clusters parallel to small arterioles
- Project axons into WM, targets unknown
- R/L hemisphere = 1.3

Neurochemistry
- Somata & prox dendrites express receptors:
 - D3
 - 5HT1b/2b
 - Vasopressin 1a

Ontogeny
- Emerge late in gestation (34-38 wks)
- Peak total # = 8 mo-4 yrs
- Pruned to adult prevalence by 8-10 yrs

Phylogeny
- Absent in monkeys and lesser apes
- Orangutan<Gorilla<Chimps
- Great apes<<<Human
- Whales
What drove VEN specialization in primates?

Hof & Van Der Gucht, Anat Rec A Discov Mol Cell Evol Biol, 2006
VENs: The key vulnerable neuron in bvFTD?

bvFTD
- Self-awareness
- Social cognition
- Early ACC-FI injury
- Asymmetric right-sided degeneration

VENs
- Late-evolving
- Late-developing
- Restricted to ACC and FI
- 30% more abundant on right
VENs: The key vulnerable neuron in bvFTD?

Seeley, Carlin et al, Ann Neurol, 2006
FTLD

Pick’s

FTLD-U

0.4% (0.1-0.7%)

N = 7

AD

1.5% (0.7-2.2%)

N = 5

CBD

1.4%

N = 1

Tau immunohistochemistry
VEN tauopathy: Pick’s disease

Tau immunohistochemistry (CP-13 antibody)
Healthy human VENs in FI

Ongur & Price, JCN 2003
VEN Hypothesis: Summary

1. In bvFTD, VENs show early selective vulnerability, akin to the early loss of ERC Layer 2 projection neurons in AD

2. Early VEN injury incites a degenerative cascade throughout an anterior paralimbic network rooted in the ACC and FI

3. VENs may provide the ACC-FI network with new information processing capacities in humans that are lost in early FTD
Next steps

- VEN neurochemistry
- VEN connectivity
- Early VEN pathogenesis in FTD
- VEN physiology
- VEN gene and protein expression profiles
Next steps

- VEN neurochemistry
- VEN connectivity
- Early VEN pathogenesis in bvFTD
- VEN physiology
- VEN gene and protein expression profiles
48 y.o. man w/ familial FTD-MND

CDR = 0

GFAP
Normal ACC/FI neuronal morphology

Pyramidal

VEN

Watson et al 2006
Early VEN pathogenesis?
Early VEN pathogenesis?
Alzheimer’s disease

Episodic Memory

ERC-DG-CA3-CA1-subic-FF-PCC

ERC Layer II pyramidal

Aβ42, tau

Presenilins ApoE, APP

Known
Hypothesized

RX
FTD

Social cognition
Self-representation
Response inhibition

ACC-FI network

Tau, TDP43

1999 → 2002 → 2006

Known
Hypothesized

MAPT
PGRN

1999
2002
2006

RX
Acknowledgments

Seeley Lab
Rich Crawford
Marcelo Macedo
EJ Kim
Danielle Carlin
Dean Sasaki
Iris Ma
Carolina Court
James Huang

UCSF Memory & Aging Center
Marilu Gorno-Tempini
Michael Weiner
Bruce Miller

UCSF ADRC Pathology Core
Kelly Creighton
Eric Huang
Julene Johnson
Mamta Sattavat
Jakc Whittembury
Steve DeArmond

Cal Tech
John Allman
Jason Kaufman
Karli Watson

UCI Brain Bank
Elizabeth Head

Stanford University
Michael Greicius
Vinod Menon

Non-governmental Funding Sources
Larry L. Hillblom Foundation
James S. McDonnell Foundation
John Douglas French Alzheimer’s Foundation

Special thanks to:
National Institute of Aging (NIA)
NIH Loan Repayment Program
UCSF patients and families