Clinical and Cognitive Features of DLB

James E. Galvin, MD, MPH
Washington University School of Medicine
James E. Galvin, MD, MPH
Disclosure of Interest

Research Support

1. National Institutes of Health
 1. NIA
 2. NIMH
 3. NACC
2. American Federation for Aging Research
3. Alzheimer’s Association
4. Longer Life Foundation
5. Wolff Charitable Trust

Speakers Bureau
Pfizer, Eisai, Ortho-McNeil, Novartis, Forest

Clinical Trials
Novartis, Martek, Merck, Allon, Elan, Wyeth, Pfizer, Eli Lilly

Consultant
Pfizer, Eisai, Ortho-McNeil, Novartis, Forest, Myriad

Licensing Agreements
Pfizer, Eisai, Novartis

I own no stocks or equity in any pharmaceutical company
Dementia with Lewy Bodies
Consensus Criteria for the Clinical Diagnosis

• Progressive cognitive decline of sufficient magnitude to interfere with normal social or occupational function
• Core features (2→probable DLB; 1→possible DLB)
 • Fluctuating cognition with variation in attention and alertness
 • Recurrent visual hallucinations
 • Parkinsonism
• Suggestive features (1 or more in addition to core features)
 • REM sleep behavior disorder
 • Neuroleptic sensitivity
 • Low dopamine transporter uptake in basal ganglia
• Supportive features (lack diagnostic specificity)
 • Repeated falls/syncope
 • Transient loss of consciousness
 • Severe autonomic dysfunction
 • Systematized delusions
 • Hallucinations in other modalities
 • Depression

Clinical Dilemma

• Dementia of the Alzheimer type (DAT) is the most common cause of dementia, with DLB being the second most common neurodegenerative cause.

• Up to 1/3 of patients clinically-diagnosed AD patients coming to autopsy have sufficient cortical and limbic Lewy bodies to meet criteria for DLB. In nearly all of these cases, DLB was not considered as a possible clinical diagnosis
 – Our experience is similar to what has been reported in other samples such as the Florida Brain Bank (Barker et al, ADAD 2005).

• Propose: misclassification of DAT patients has significant implications in clinical trial enrollment, biomarker research, prognosis and treatment outcomes.
Cognitive Fluctuation

- Most confusing aspect
- Spontaneous impairment: alertness/attention
- May appear drowsy but awake, look “dazed”
- Vary from day to day or week to week
- Loss of consciousness has been described
- No EEG correlate
- Mayo Clinic Fluctuation Scale (Ferman, 2005)
 - Drowsy or lethargic during day
 - Sleeps for 2 or more hours during day
 - Thinking illogical, unclear, incoherent
 - Stares into space
Cognitive Features of DLB

<table>
<thead>
<tr>
<th>Psychometric Test</th>
<th>Factor 1 (Visuospatial)</th>
<th>Factor 2 (Verbal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAIS Digit Symbol</td>
<td>.88</td>
<td></td>
</tr>
<tr>
<td>Trailmaking A (seconds)</td>
<td>-.87</td>
<td></td>
</tr>
<tr>
<td>WAIS Block Design</td>
<td>.87</td>
<td></td>
</tr>
<tr>
<td>Benton Recall Correct</td>
<td>.78</td>
<td></td>
</tr>
<tr>
<td>Benton Copy Correct</td>
<td>.77</td>
<td></td>
</tr>
<tr>
<td>Crossing Off</td>
<td>.68</td>
<td></td>
</tr>
<tr>
<td>WAIS Information</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>WMS Logical Memory</td>
<td>.82</td>
<td></td>
</tr>
<tr>
<td>WMS Associate Memory</td>
<td>.82</td>
<td></td>
</tr>
<tr>
<td>Boston Naming Test</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>WMS Digits Forward</td>
<td>.64</td>
<td></td>
</tr>
<tr>
<td>WMS Digits Backward</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>Word Fluency</td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>% explained variance</td>
<td>38</td>
<td>32</td>
</tr>
</tbody>
</table>

Longitudinal Sample (n=132)
66 AD, 57 DLB, 9 pure DLB

Visuospatial factor
Pure AD = pure DLB > DLB/AD

Verbal factor
Pure DLB > pure AD = DLB/AD

Suggests that cortical Lewy bodies alone are not associated with verbal memory deficits, but the presence of both AD and DLB produced poorer visuospatial performance than either pathological burden alone.

Johnson, Morris and Galvin, Neurology (2005) 65:1232-8
Personality Traits in DLB

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nondemented (N=34)</th>
<th>AD (N=125)</th>
<th>DLB (N=125)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at first visit (yrs)</td>
<td>80.6 (9.9)</td>
<td>78.1 (10.3)</td>
<td>76.4 (9.3)</td>
<td>ns</td>
</tr>
<tr>
<td>Age at diagnosis</td>
<td>84.4 (6.7)</td>
<td>81.8 (10.9)</td>
<td>80.8 (10.4)</td>
<td>ns</td>
</tr>
<tr>
<td>Age at death</td>
<td>91.9 (7.7)</td>
<td>84.4 (10.1)</td>
<td>81.7 (9.4)</td>
<td>.01</td>
</tr>
<tr>
<td>Gender (%men)</td>
<td>52.9</td>
<td>44.4</td>
<td>50.4</td>
<td>ns</td>
</tr>
<tr>
<td>Education</td>
<td>13.2 (4.2)</td>
<td>13.8 (3.5)</td>
<td>12.9 (3.5)</td>
<td>ns</td>
</tr>
<tr>
<td># assessments</td>
<td>6.5 (7.0)</td>
<td>4.9 (3.9)</td>
<td>4.2 (3.4)</td>
<td>ns</td>
</tr>
<tr>
<td>CDR at 1st visit</td>
<td>.07 (.18)</td>
<td>.56 (.47)</td>
<td>.85 (.60)</td>
<td><.001</td>
</tr>
<tr>
<td>CDR-SB at 1st visit</td>
<td>.33 (.85)</td>
<td>3.0 (2.9)</td>
<td>4.7 (3.7)</td>
<td><.001</td>
</tr>
<tr>
<td>CDR at diagnosis</td>
<td>.31 (.26)</td>
<td>.59 (.41)</td>
<td>.79 (.45)</td>
<td><.001</td>
</tr>
<tr>
<td>CDR-SB at diagnosis</td>
<td>1.2 (1.3)</td>
<td>3.2 (2.7)</td>
<td>4.5 (3.0)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Blessed Dementia Scale: Rigidity, Egocentricity, Loss of Concern, Coarse Affect, Impaired Emotional Control, Inappropriate Hilarity, Diminished Emotion Responsiveness, Sexual Misdemeanor, Relinquish Hobbies, Apathy, Purposeless Hyperactivity

Other Behaviors: Hallucinations, Delusions

Galvin et al, Neurology (2007) 68:1895-1901
Analysis of Personality Traits

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irritable</td>
</tr>
<tr>
<td>Increased rigidity</td>
<td>.728</td>
</tr>
<tr>
<td>Increased egocentricity</td>
<td>.813</td>
</tr>
<tr>
<td>Loss of concern</td>
<td>.753</td>
</tr>
<tr>
<td>Coarsening of affect</td>
<td>.494</td>
</tr>
<tr>
<td>Impaired emotional control</td>
<td>.428</td>
</tr>
<tr>
<td>Diminished emotional responsiveness</td>
<td>.663</td>
</tr>
<tr>
<td>Hobbies relinquished</td>
<td>.823</td>
</tr>
<tr>
<td>Growing apathy</td>
<td>.805</td>
</tr>
<tr>
<td>Purposeless hyperactivity</td>
<td>.476</td>
</tr>
<tr>
<td>Hilarity</td>
<td></td>
</tr>
<tr>
<td>Sexual misdemeanor</td>
<td></td>
</tr>
<tr>
<td>Rotated Eigenvalues</td>
<td>4.1</td>
</tr>
<tr>
<td>Explained variance (%)</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Area under ROC curve
PASSIVE: AUC = 0.61 (95% CI: 0.54-0.68, p=.006)
This suggests good ability to discriminate between DLB and AD.

Galvin et al, Neurology (2007) 68:1895-1901
Outcome Analyses: Mortality

DLB: 78.0y
AD: 84.6y
(p<0.001)

DLB men: 76.8y
AD women: 85.9y
(p<0.001)

Outcome Analyses: Survival post-Dx

A
- DLB: 7.28y
- AD: 8.47y (p=.02)

B
- DLB women: 6.61y
- AD women: 8.75 yrs (p=.005).

Results: Adjusted HR (Survival)

• Rest tremor (present in 35 individuals) was a protective factor related to survival
 – HR 0.29, 95% CI: 0.14-.63

• This finding suggests that rigid-predominant forms of parkinsonism in dementia may lead to worse outcomes, similar to risks reported for rigid-predominant forms of PD

Outcome Analyses: NH Placement

Marginal difference in placement
- DLB vs. AD (p=0.07).

NH placement median time
- DLB: 6.1y (95% CI: 4.4-7.8)
- AD: 6.6y (95% CI: 5.9-7.2).

Covariates:
- Self-report depression: HR 1.66
 - 95% CI: 1.1 - 2.6
- Extrapyramidal signs: HR 22.96
 - 95% CI: 1.8 - 288.5

No gender effect.

Outcome Analyses: Survival in NH

- Marginal difference in the survival time in a nursing home to death between AD and DLB (p=0.08).
- DLB median survival: 28.93 months (95% CI: 14.4-43.6)
- AD median survival: 38.57 months (95% CI: 30.5-46.6)
- Gender effect (p = .012)
 - DLB women surviving shortest
 - median survival 12.17 months, 95% CI: 9.5-14.8
 - AD women surviving longest
 - median survival 41.30 months, 95% CI: 30.5-52.09
- Covariates
 - Depression (HR 1.69, 95% CI: 1.0 - 2.7)
 - Ability to feed self (HR 3.53, 95% CI: .96 – 13.0)

Cognitive Profiles in Dementia

Verbal Memory

Visuospatial

Working Memory

General

INFO
PA
BNT
LM
BVRT
DSym
TRA
BD
WF
MC
DS-B
DS-F

WAIS Information
WMS Associate Recall
Boston Naming Test
Logical Memory
Benton Visual Recall
WAIS Digit Symbol
Trailmaking A
WAIS Block Design
Category Fluency – Animals
WMS Mental Control
Digit Span – Forward
Digit Span - Backward

Johnson et al, Neurology In Press, 2008
Cognitive Profiles in Dementia

- Visuospatial
- Working Memory
- Verbal Memory

- WAIS Information
- WMS Associate Recall
- Boston Naming Test
- Logical Memory
- Benton Visual Recall
- WAIS Digit Symbol
- Trailmaking A
- WAIS Block Design
- Category Fluency – Animals
- WMS Mental Control
- Digit Span – Forward
- Digit Span - Backward

Johnson et al, Neurology In Press, 2008
ChAT activity in AD and DLB

Adapted from Corey-Bloom (personal communication)
Treatment Options

• No Approved Therapies
• Central Acting Cholinesterase Inhibitors
 – modest improvement in cognition
 – diminished hallucinations
 – improvement in behavior
• Role of Memantine is unclear
• For EPS: regular Carbidopa/Levodopa
• For RBD: Clonazepam, Melatonin
• Orthostatic hypotension: leg elevation, elastic stockings, increasing salt and fluid intake
 – Medication: midodrine, fludrocortisone
• Urinary urgency, frequency and incontinence
 – Medication: oxybutynin, tolterodine tartrate, bethanechol chloride, propantheline
Psychotropics and Behavioral Disorders

- No FDA-approved orally administered agents for behavioral disturbances in dementia

<table>
<thead>
<tr>
<th>Agitation</th>
<th>Psychosis</th>
<th>Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Atypical antipsychotics*</td>
<td>• Atypical antipsychotics*</td>
<td>• SSRIs</td>
</tr>
<tr>
<td>• Mood stabilizers/anticonvulsants</td>
<td>• Antidepressants, anxiolytics, etc</td>
<td>• SSRNIs</td>
</tr>
</tbody>
</table>

*FDA Public Health Advisory (April 2005): Clinical trials of antipsychotic drugs to treat behavioral disorders in elderly patients with dementia have shown a higher death rate compared to placebo. SSRIs = selective serotonin reuptake inhibitors; SSRNIs = selective serotonin and noradrenergic reuptake inhibitors.

Conclusions

• DLB has a more rapid progression than AD in general cognitive abilities and differences exist in domain-specific cognitive abilities
 – Verbal Memory: Preclinical AD has a more rapid change; after diagnosis rates of change are similar between AD and DLB
 – Visuospatial abilities: Preclinical DLB is already at floor effect, better visual-spatial tasks are needed to describe deficits in DLB
 – Working Memory: After diagnosis, DLB progresses at a more rapid rate

• DLB also has a more rapid progression in clinically-meaningful outcomes such as mortality, survival and nursing home placement.
 – non-cognitive features of depression, extrapyramidal signs, inability to carry out ADLs are important covariates.

• As there are no batteries specifically designed to detect DLB, assessing personality traits, psychotic features, sleep and fluctuations may improve the clinical diagnosis of DLB.

• The findings underscore the importance of accurate antemortem diagnosis, understanding the differences in clinical and cognitive features and how these differences might impact what we learn from clinical trials, longitudinal studies and biomarker research projects
Acknowledgements

- Galvin Lab
 - Neeraj Pandey, PhD
 - Divya Palamand, MD
 - Ken Wilkins, MD
 - Jori Pollack, MD
 - Jeff Strider, MS
 - Heather Malcom
 - Irina Levin
 - Erin Ly

- ADRC
 - John Morris, MD
 - Martha Storandt, PhD
 - Chengjie Xiong, PhD
 - Betsy Grant, PhD
 - David Johnson, PhD
 - Catherine Roe, PhD
 - Monique Williams, MD
 - David Holtzman, MD