Neuropathology And Biology Of Lewy Body Dementia

John Q. Trojanowski, M.D., Ph.D.
Alzheimer’s Disease Core Center, Udall Parkinson’s Disease Center, Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania
Philadelphia, PA
DISCLOSURE: PARTICIPATED IN 2005 DLB CONSORTIUM, CHAIRED 1997 NIA-REAGAN
Neurodegenerative Protein Misfolding Diseases:
Accumulation of the same disease protein has diverse and overlapping clinical manifestations

Cytoplasmic/intranuclear inclusions

Tauopathies
- Alzheimer’s disease
- Pick’s disease
- PSP
- CBD
- FTD with MAPT mutations

α-Synucleinopathies
- Parkinson’s disease
- Dementia with LBs
- MSA
- NBIA-1

TDP43opathies
- FTLD-U with/without MND
- FTD with PGRN mutations
- FTD with VCP mutations
- Sporadic and familial ALS (except SOD1 FALS)
- Guam ALS/PDC

Poly-Q disorders
- Huntington’s disease
- Other SCAs

Neuman et al, Arch Neurol, 2008
FTLD: Clinicopathological Correlations

A. Pathology of FTD patients

- Tau N = 42, 38%
- AD N = 26, 24%
- FTLD-U N = 30, 28%
- Other N = 6, 6%
- DLDH N = 4, 4%

B. Tauopathies

- CBD N = 17, 40%
- NOS N = 6, 6%
- AGD/TPSD N = 5, 12%
- FTDP-17 N = 4, 10%
- PiD N = 7, 17%
- PSP N = 6, 14%

PS: First patient with clinical AD to come to autopsy in ADNI had DLB! Most clinical DLB patients in Penn ADCC have AD and DLB. Pure DLB is rare in our center.
Alpha-Synuclein Genetics & Neuropathology

- 140 aa protein, unknown function, synaptic vesicle associated
- 3 point mutations (53T, A30P, E46K, duplication/triplication cause familial PD
- Alpha-Synuclein fibrils are main component of Lewy Bodies & Neurites

- Alpha-synuclein pathology is linked to mechanisms of neurodegeneration
 - Alpha-synuclein pathology found in PD, DLB, LBVAD, MSA, NBIA-1
 - Overexpression of alpha-synuclein in Tg mice results in inclusions, neurodegeneration & death
 - Alpha-synuclein polymerizes *in vitro*
 - Mutations, concentration increase fibrillation rate
 - But, what is the toxic or pathogenic species?
Alpha-Synuclein: Function?

- Expressed throughout brain, synaptic protein, associates with vesicles
- Alpha-synuclein knockout mice have depleted reserve, docked vesicle pool
- Alpha-synuclein overexpression in PC12 cells cause increased docked vesicles, decrease in release
- Determining alpha-synuclein function may provide insights into disease pathogenesis

Cabin et al. 2002
DLB Consensus Criteria for the Neuropathologic Diagnosis (1996)

- **Sampling**
 - Neocortex
 - Frontal BA8/9
 - Temporal BA21
 - Parietal BA40
 - Limbic/paralimbic
 - Anterior cingulate BA24
 - Transentorhinal BA29
 - Brain Stem
 - Substantia nigra
 - Locus ceruleus
 - Dorsal nucleus of vagus

- Scoring of neocortical and limbic regions
 - 0 LB/area 0
 - 1-5 LB/area 1
 - >5 LB/area 2

- Classification
 - LB scores are summated and final score is used to subclassify as follows:
 - 0-2 brain stem predominant
 - 3-6 limbic
 - 7-10 neocortical

Guiding principle: The likelihood of DLB is directly related to LB Pathology and inversely related to AD pathology.

<table>
<thead>
<tr>
<th>Lewy body pathology</th>
<th>Alzheimer pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low AD (Braak I-II)</td>
</tr>
<tr>
<td></td>
<td>Intermediate AD (Braak III-IV)</td>
</tr>
<tr>
<td></td>
<td>High AD (Braak V-VI)</td>
</tr>
<tr>
<td>Brainstem</td>
<td>Low DLB</td>
</tr>
<tr>
<td>Transitional</td>
<td>High DLB</td>
</tr>
<tr>
<td></td>
<td>Intermediate DLB</td>
</tr>
<tr>
<td>Diffuse</td>
<td>High DLB</td>
</tr>
<tr>
<td></td>
<td>High DLB</td>
</tr>
<tr>
<td></td>
<td>Intermediate DLB</td>
</tr>
</tbody>
</table>
THIRD CONSENSUS MEETING: LB PATHOLOGY PATTERN

<table>
<thead>
<tr>
<th>Lewy body type pathology</th>
<th>Brainstem regions</th>
<th>Basal forebrain/limbic regions</th>
<th>Neocortical regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IX-X</td>
<td>LC</td>
<td>SN</td>
</tr>
<tr>
<td>Brainstem-predominant</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Limbic (transitional)</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Diffuse neocortical</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
</tbody>
</table>

0 = None
1 = Mild (sparse LBs or LNs)
2 = Moderate (more than one LB in a low power field and sparse LNs)
3 = Severe (four or more LBs and scattered LNs in a low power field)
4 = Very severe (numerous LBs and numerous LNs)

McKeith et al 2005
Braak Staging Of Lewy Body Pathology

Braak et al, 2003, 2004

Cognitive status and Braak stages of LB pathology (LBP) were assessed in 88 PD patients based on detection of LBP by alpha-synuclein IHC. MMSE scores from the last neurological examination prior to death were used to determine cognitive status and the degree of cognitive decline. Four subgroups of MMSE scores ranging from non-significantly impaired to severely impaired cognition were analyzed. Each of the 88 cases could be assigned to one of the PD stages 3-6, and MMSE scores correlated significantly with the aforementioned stages. The median MMSE scores decreased from stages 3-6.
STAGES 3 TO 6 OF α-SYNUCLEIN PATHOLOGICAL CHANGES IN PD
Stage of Parkinson’s disease neuropathology and cognitive status of individual patients

Autopsy series (N=88)

<table>
<thead>
<tr>
<th>PD STAGE</th>
<th>MMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30-25</td>
</tr>
<tr>
<td>4</td>
<td>24-21</td>
</tr>
<tr>
<td>5</td>
<td>20-11</td>
</tr>
<tr>
<td>6</td>
<td>10-0</td>
</tr>
</tbody>
</table>

Cognitive Status

Kruskal-Wallis H-test: $H_{corr} = 15.79; \ p < 0.005$

trend test: $H_{lin} = 6.16; \ p < 0.025$
Empiric Refinement of the Pathologic Assessment of Lewy-Related Pathology in the Dementia Patient

James B. Leverenz, MD; Ronald Hamilton, MD; Debby W. Tsuang, MD, MSc; Aimée Schantz, MS; Darcy Vavrek, MD, MSc; Eric B. Larson, MD, MPH; Walter A. Kukull, PhD; Oscar Lopez, MD; Douglas Galasko, MD; Elizer Masliah, MD; Jeffrey Kaye, MD; Randall Woltjer, MD, PhD; Christopher Clark, MD; John Q. Trojanowski, MD, PhD; and Thomas J. Montine, MD, PhD

1 Departments of Veterans Affairs Northwest Network Mental Illness and 2 Parkinson’s Disease Research, Education and Clinical Centers, Departments of 3 Epidemiology, 4 Medicine, 5 Neurology, 6 Pathology and 7 Psychiatry and Behavioral Sciences, University of Washington, 8 Group Health Cooperative, Seattle, Wash. Departments of 9 Neurology and 10 Pathology, University of Pittsburgh, Pittsburgh, Pa. Departments of 11 Neurology and 12 Pathology, University of California San Diego, San Diego, Calif. Departments of 13 Neurology and 14 Pathology, Oregon Health & Sciences University, Portland, Ore. Departments of 15 Neurology and 16 Pathology, University of Pennsylvania, Philadelphia, Pa.

Keywords
Lewy bodies; dementia; α-synuclein.

Corresponding author:
James B. Leverenz, MD, VA Puget Sound Health Care System, MIRECC (116MIRECC), 1660 S. Columbian Way, Seattle, WA 98108 (E-mail: leverenz@uw.edu)

Received: 30 September 2007; revised 5 November 2007; accepted 6 November 2007.

Supported by NIH grants NS48595, NS053486, AG10124, AG06781, AG10845, AG05136, AG05133, and the Department of Veterans Affairs.

doi:10.1111/j.1750-3639.2007.00117.x

Abstract
Lewy-related pathology (LRP) is a common pathologic finding at autopsy in dementia patients. Recently criteria for categorizing types of LRP in dementia patients were published, though these criteria have yet to be systematically applied to large dementia samples. We examined a large (n = 208) referral-based autopsy sample for LRP, and applied the published criteria for LRP categorization to these cases. We found almost half (49%) of LRP positive cases from this sample were not classifiable. However, modifying the published criteria by reducing the number of regions requiring examination, allowing more variability in LRP severity scores within specific brain regions, and adding an amygdala predominant category permitted classification of 97% of LRP positive cases from the referral-based sample. Application of the modified criteria to an unrelated community-based autopsy sample (n = 226) allowed classification of 96% of LRP positive cases. Modest modifications in the published criteria permit a significantly greater number of dementia cases with LRP to be classified. In addition, this modification allows for more limited sampling of brain regions for classification of LRP. We propose that these modified criteria for the categorization of LRP be utilized in patients with a history of dementia.
Cases evaluated from the referral-based Lewy body Associated Dementia Research Study (LADRS) sample and the community-based Alzheimer’s Disease Patient Registry (ADPR) sample.

<table>
<thead>
<tr>
<th>TABLE OF LADRS & ADPR CASES</th>
<th>LADRS</th>
<th>ADPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autopsies (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available cases with dementia diagnosis¹</td>
<td>324</td>
<td>260</td>
</tr>
<tr>
<td>& with sufficient tissue sampling</td>
<td>208</td>
<td>226</td>
</tr>
<tr>
<td>& with LRP in any region</td>
<td>125</td>
<td>126</td>
</tr>
<tr>
<td>& with LRP in amygdala, SN, or medulla</td>
<td>125</td>
<td>126</td>
</tr>
<tr>
<td>Age² at onset (mean ± SD)</td>
<td>68 ± 9</td>
<td>76 ± 6</td>
</tr>
<tr>
<td>Age² at death (mean ± SD)</td>
<td>78 ± 8</td>
<td>84 ± 6</td>
</tr>
<tr>
<td>M:F (n)²</td>
<td>68:57</td>
<td>52:74</td>
</tr>
<tr>
<td>CERAD Neuritic Plaque Score (n)²</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sparse</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Frequent</td>
<td>103</td>
</tr>
<tr>
<td>Braak Stage (n)²</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>I or II</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>III or IV</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>V or VI</td>
<td>77</td>
</tr>
</tbody>
</table>

¹Probable or possible AD, DLB, or dementia of type unknown (LADRS) or DSM-III R criteria for any dementia (ADPR). ²Age, gender, plaque score, and Braak stage refer to those autopsies that had any LPR. Abbreviations: Alzheimer’s disease (AD), Dementia with Lewy Bodies (DLB), Lewy-related pathology (LRP), Consortium to Establish a Registry for AD (CERAD).
Table 2. LRP categorization in LRP positive LADRS cases using all nine regions recommended by the published criteria or using a subset of five regions.

<table>
<thead>
<tr>
<th>Lewy body type pathology</th>
<th>Nine regions assessed(^1) N (%)</th>
<th>Five regions assessed(^2) N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstem-predominant</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Limbic (transitional)</td>
<td>3 (2%)</td>
<td>10 (8%)</td>
</tr>
<tr>
<td>Diffuse neocortical</td>
<td>61 (49%)</td>
<td>67 (54%)</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>61 (49%)</td>
<td>47 (38%)</td>
</tr>
</tbody>
</table>

\(^1\) reference 16
\(^2\) medulla, SN, amygdala, cingulate gyrus, frontal cortex
Proposed modified criteria for categorization of Lewy-related pathology (LRP) in patients with dementia. Results from two autopsy series

<table>
<thead>
<tr>
<th>Predominant region</th>
<th>LRP severity scoring with proposed criteria</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SN or medulla</td>
<td>Amygdala</td>
</tr>
<tr>
<td>Brainstem</td>
<td>1+ in either</td>
<td>0–2</td>
</tr>
<tr>
<td>Amygdala</td>
<td>0–1 in both</td>
<td>1+</td>
</tr>
<tr>
<td>Limbic</td>
<td>1+ in either</td>
<td>2+</td>
</tr>
<tr>
<td>Neocortical</td>
<td>1+ in either</td>
<td>2+</td>
</tr>
<tr>
<td>Mixed</td>
<td>Cases not classifiable by modified criteria</td>
<td></td>
</tr>
</tbody>
</table>

LADRS = Lewy Body-Associated Dementia Research Study; ADPR = Alzheimer’s Disease Patient Registry

Leverenz et al, Brain Pathol 2008
Validation of the Neuropathologic Criteria of the Third Consortium for Dementia With Lewy Bodies for Prospectively Diagnosed Cases

Hiroshige Fujishiro, MD, PhD, Tanis J. Ferman, PhD, Bradley F. Boeve, MD, Glenn E. Smith, PhD, Neill R. Graff-Radford, MBBCh, FRCP, Ryan J. Uitti, MD, Zbigniew K. Wszolek, MD, David S. Knopman, MD, Ronald C. Petersen, MD, Joseph E. Parisi, MD, and Dennis W. Dickson, MD

Clinico-pathological study of prospectively follow patients: 43 probable DLB, 9 possible DLB, 24 probable AD
Prospective cohort study

95% have high or intermediate likelihood DLB and most have diffuse cortical LBs.

Number of clinically probable DLB cases per category

<table>
<thead>
<tr>
<th></th>
<th>Low AD</th>
<th>Intermediate AD</th>
<th>High AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstem LBs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transitional LBs</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Diffuse LBs</td>
<td>6</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

High likelihood DLB
Intermediate likelihood DLB
Low likelihood DLB
Possible changes in CDLB neuropathologic criteria based upon prospective clinically probable DLB & AD

Ratio: clinically probable DLB / total with this pathologic profile

<table>
<thead>
<tr>
<th>Braak NFT 0-II</th>
<th>Braak NFT III-IV</th>
<th>Braak NFT V</th>
<th>Braak NFT VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No LBs</td>
<td>0</td>
<td>0/9</td>
<td>0/3</td>
</tr>
<tr>
<td>Amygdala LBs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brainstem LBs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transitional LBs</td>
<td>2/2</td>
<td>2/2</td>
<td>0/1</td>
</tr>
<tr>
<td>Diffuse LBS</td>
<td>6/6</td>
<td>20/21</td>
<td>9/10</td>
</tr>
</tbody>
</table>

High likelihood DLB
Intermediate likelihood DLB
Low likelihood DLB

- The use of alpha-synuclein immunohistochemistry has altered our concepts of the cellular pathology, anatomical distribution and prevalence of LB disorders, but use of different methods between laboratories has led to inconsistent results. Eight different IHC methods for demonstrating alpha-synuclein pathology, developed in eight separate expert laboratories, were evaluated for detecting LB pathology. Identical test sets of formalin-fixed, paraffin-embedded sections from subjects with/without LB disorders were stained and graded. The methods did not differ significantly in terms of LB counts, but varied considerably in their ability to reveal neuropil pathology. One method was superior for revealing these neuropil elements and the critical factor contributing to its high sensitivity was the use of proteinase K for epitope retrieval. Some methods, however, achieved relatively high sensitivities with optimized formic acid protocols combined with a hydrolytic step. One method was developed that allows high sensitivity with commercially available reagents.
Figure 3
What next? Collaborations Between NIA ADCs & NINDS Morris K. Udall Parkinson’s Disease Research Centers May Yield Insights Into Mechanisms Underlying PDD/DLB

Now there 14 centers across the US (12 are at institutions with an ADC):

- Harvard U, Brigham and Women’s Hospital, Boston, MA
- Columbia U, NYC
- Duke U, Durham, NC
- Harvard U, /McLean Hospital, Belmont, MA
- Johns Hopkins U, Baltimore, MD
- Harvard U/MIT Massachusetts General Hospital, Boston, MA
- Mayo Clinic, Jacksonville, FL
- Northwestern University, Evanston, IL
- UCLA, Los Angeles, CA
- U of Kentucky Medical Center, Lexington, KY
- U of Virginia, Charlottesville, VA
- U of Pittsburgh, Pittsburgh, PA
- U of Rochester – Parkinson’s Disease Data Organizing Center, Rochester, NY
- University of Pennsylvania, Philadelphia, PA
The new Penn Udall Center addresses unresolved questions about the pathobiology and underlying mechanisms of dementia in PD

Focus of the Penn Udall Research Center:
- Elucidate mechanisms of cognitive impairments and brain degeneration in patients with Parkinson’s disease (PD) and dementia (PDD) in patient oriented studies and studies of in vivo model systems.
TDP-43 Pathology Occurs In Synucleinopathies

DLB+AD = 25/80 (31%); PD = 5/69 (7%); PDD = 4/21 (19%); controls = 1/33 (3%); DLB 0/10 (0%)

Core C: A subset of TDP-43 positive cases show significant CA1/subiculum neuron loss.

*Dementia represents all patients from DLB+AD, DLB, PDD

** Significant differences (p<0.05)

<table>
<thead>
<tr>
<th>TDP-43 pathology</th>
<th>+</th>
<th>-</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dementia</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLB/AD</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDD</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

*Cell Loss (%)

• Alpha-synuclein neuritic pathology may explain behavioral impairments in PDD/DLB but if they are eliminated with disease progression they may be difficult to correlate with these impairments
Mechanisms of Alpha-synuclein Mediated Neurodegeneration In Parkinson’s Disease

Native protein (random coil) → Misfolded proteins → Oligomers (β pleated sheet) → Fibrils (β pleated sheet)

Genetic and environmental factors → Molecular chaperones

Phagosomes/lysosomes → Proteasome → Peptides

Autophagy → Inhibition of UPS → Disruption of axonal transport

Oxidative Stress → Synaptic dysfunction → Protein sequestration

Lewy neurites → Lewy bodies

Mitochondrial dysfunction
There is a need for α-Synuclein Tg Mice with cognitive impairment and no motor impairments to elucidate mechanisms of dementia due to LBs and for drug discovery research.

Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein: a progressive neurodegenerative model of diffuse Lewy body disease.

Zhou W, Milder JB, Freed CR

This group showed that tyrosine-to-cysteine mutation Y39C enhanced alpha-synuclein (AS) fibril formation and neurotoxicity. Here, they generated Tg mice expressing Y39C mutant human AS gene controlled by the mouse Thy1 promoter. Mutant human AS was 150% overexpressed and at 9-12 months, Tg mice began to display motor dysfunction in rotarod testing. At 21-24 months, AS aggregates were accompanied by severe behavioral deficits. At this age, Tg developed Lewy body-like AS and ubiquitin-positive inclusions. In summary, Y39C human AS Tg mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease.

But, More Rapid Progress Is Needed Now!
To Put Things in Perspective……..

• The US will spend $1 Trillion on banking/mortgage crisis caused by lacks regulation.

• The US spends $53 Billion/year on anti-aging balms, salves, lotions, etc. with no proven efficacy.

• The US spends $2.6 Billion/year on Viagra and Cialis and probably far more on breast implants.

• The US spends $2 Billion/year on popcorn.

• French President Sarkozy recently unveiled a plan to spend $480 Million per year – or $558 per person – for 5 years to fight AD which afflicts 860,000 people in France.

• And in the US, the NIH spends only $644 Million/year – or $129 per person - for research on AD which afflicts 5,000,000 US citizens.

• We can do more to solve the epidemic of AD, PD, DLB, FTLD, etc. which will bankrupt our economy by 2050 if not earlier.
PENN Neurodegenerative Disease Research
- Solving the Puzzle!

- quality of life
- cure
- diagnosis
- prevention

School of Arts and Sciences
Leonard Davis Institute of Health Economics
School of Nursing
School of Medicine (Geriatrics, Psychiatry, Pathology and Lab Medicine, Neurology, etc)
Benjamin Franklin

Institute on Aging
Center for Clinical Epidemiology and Biostatistics

Alzheimer's Disease Center
Center for Neurodegenerative Disease Research
Udall Parkinson's Research Center of Excellence
Center for Bioethics
Penn Memory Clinic
Parkinson's Disease and Movement Disorder Center