Modifiable risk factors for cognitive decline, MCI and AD in Northern Manhattan

José A. Luchsinger MD MPH
Columbia University Medical Center
New York, NY
Alzheimer’s disease

Genes:
- APP
- PS1
- PS2
- APOE-ε4

Modifiable risk factors
- Diet
- Education
- Ethnicity

Cerebrovascular disease

Amyloid beta deposits

- AD
- aMCI
Vascular cognitive syndromes

Modifiable risk factors:
- Hypertension
- Diabetes
- Dyslipidemia
- Smoking

Stroke
White matter disease

Vascular cognitive impairment
Vascular dementia
Non-amnestic MCI
Dysexecutive syndrome

???
Alzheimer

Vascular
Normal cognition Mild cognitive impairment Dementia
WHICAP (PI: R. Mayeux)

• Longitudinal study of aging in Northern Manhattan
• > 64 years
• Multiethnic
 – 44% Hispanic
 – 32% African American
 – 24% White
• Without dementia at baseline
• Mean follow-up > 6 years
Outcome measures

- Dementia
 - DSM IV
 - NINDS-AIREN
- MCI
 - Similar to Petersen’s definition
 - Amnestic
 - Non Amnestic

- 4 cognitive scores from factor analysis
 - Memory
 - Executive
 - Visuospatial
 - Language
Questions pursued

• Is a risk factor associated with dementia or MCI?
 – Survival analyses

• Is a relation with dementia mediated by vascular mechanisms?
 – Attenuation of coefficients

• Does a risk factor modify cognitive decline?
 – Mixed models or GEE

• Could a risk factor modify the progression from MCI to dementia?
 – Logistic regression
Modifiable risk factors

• Diabetes:
 – Prevalence approximately 20%
 – Ascertained by history

• Hypertension:
 – Prevalence approximately 70%
 – Ascertained by history or BP
Diabetes: relation to dementia

<table>
<thead>
<tr>
<th>Category</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer disease</td>
<td>1.7</td>
</tr>
<tr>
<td>DAS</td>
<td>2.8</td>
</tr>
<tr>
<td>All dementia</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Diabetes: relation to MCI

Table 3. HRs and 95% CIs Relating Diabetes to MCI, Amnestic MCI, and Nonamnestic MCI*

<table>
<thead>
<tr>
<th></th>
<th>MCI Cases (Rate)</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HR (95% CI)</td>
<td>P Value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>All-cause MCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No diabetes</td>
<td>241 (7.2)</td>
<td>1.0</td>
<td>.007</td>
<td>1.0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>93 (9.4)</td>
<td>1.4 (1.1-1.8)</td>
<td>.007</td>
<td>1.3 (1.0-1.7)</td>
</tr>
<tr>
<td>Amnestic MCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No diabetes</td>
<td>117 (3.5)</td>
<td>1.0</td>
<td>.05</td>
<td>1.0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>43 (4.4)</td>
<td>1.4 (1.0-1.9)</td>
<td>.05</td>
<td>1.5 (1.0-2.1)</td>
</tr>
<tr>
<td>Nonamnestic MCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No diabetes</td>
<td>124 (3.7)</td>
<td>1.0</td>
<td>.04</td>
<td>1.0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>50 (5.1)</td>
<td>1.4 (1.0-1.9)</td>
<td>.04</td>
<td>1.3 (0.9-1.8)</td>
</tr>
</tbody>
</table>

*Abbreviations: CI, confidence interval; HR, hazard ratio; MCI, mild cognitive impairment.

*Model 1 is adjusted for age and sex; model 2 is also adjusted for ethnic group, years of education, and APOE ε4; and model 3 is also adjusted for hypertension, low-density lipoprotein cholesterol level, current smoking, heart disease, and stroke. Rates are per 100 person-years.

Hypertension: relation to dementia

<table>
<thead>
<tr>
<th>Hypertension</th>
<th>Total at risk</th>
<th>Developed AD, n (%)</th>
<th>AD, RR (95% CI)</th>
<th>Developed VaD, n (%)</th>
<th>VaD, RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>731</td>
<td>84 (11.5)</td>
<td>0.9 (0.7–1.3)</td>
<td>39 (5.3)</td>
<td>1.8 (1.0–3.2)*</td>
</tr>
<tr>
<td>Absent</td>
<td>528</td>
<td>73 (13.8)</td>
<td>1.0 (reference)</td>
<td>17 (3.2)</td>
<td>1.0 (reference)</td>
</tr>
</tbody>
</table>

Unadjusted risk ratio (RR) and 95% CI are shown. When AD model was repeated adjusting for age, education, ethnic group, and history of heart disease, the RR decreased to 0.8 (95% CI, 0.6–1.1). Similarly, the RR decreased to 1.6 (0.9–2.9) for the VaD model when it was adjusted for these factors. The RR did not change when stratified by treatment.

* $p = 0.05$.

Posner, Neurology 2002
Hypertension: relation to MCI

Table 2. Data Relating Hypertension and the Risk of Incident MCI

<table>
<thead>
<tr>
<th>MCI Subtype</th>
<th>Incident MCI, No. (%)</th>
<th>Model<sup>b</sup></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>All-cause MCI</td>
<td></td>
<td>(Model 1)</td>
<td>(Model 2)</td>
<td>(Model 3)</td>
<td></td>
</tr>
<tr>
<td>Group without hypertension</td>
<td>76 (26.0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Group with hypertension</td>
<td>258 (41.2)</td>
<td>1.40 (1.06-1.77)<sup>c</sup></td>
<td>1.30 (1.02-1.73)<sup>c</sup></td>
<td>1.20 (0.81-1.69)</td>
<td></td>
</tr>
<tr>
<td>Amnestic MCI</td>
<td></td>
<td>(Model 1)</td>
<td>(Model 2)</td>
<td>(Model 3)</td>
<td></td>
</tr>
<tr>
<td>Group without hypertension</td>
<td>42 (14.4)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Group with hypertension</td>
<td>118 (18.8)</td>
<td>1.10 (0.79-1.63)</td>
<td>1.10 (0.80-1.67)</td>
<td>0.90 (0.54-1.47)</td>
<td></td>
</tr>
<tr>
<td>Nonamnestic MCI</td>
<td></td>
<td>(Model 1)</td>
<td>(Model 2)</td>
<td>(Model 3)</td>
<td></td>
</tr>
<tr>
<td>Group without hypertension</td>
<td>34 (11.6)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Group with hypertension</td>
<td>140 (22.4)</td>
<td>1.70 (1.13-2.42)<sup>c</sup></td>
<td>1.60 (1.06-2.29)<sup>c</sup></td>
<td>1.60 (0.93-2.85)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: MCI, mild cognitive impairment.

^aA Cox proportional hazards model was used, with age at onset as the time variable, as described in the “Statistical Analyses” subsection of the “Methods” section.

^bData are given as hazard ratio (95% confidence interval). Model 1 was adjusted for sex and age; model 2, adjusted for age, sex, years of education, ethnic group, and APOE genotype; and model 3, adjusted for sex, age, ethnic group, years of education, APOE genotype, stroke, diabetes mellitus, heart disease, current smoking, and low-density lipoprotein cholesterol level. In all models, the group without hypertension was the reference group.

^cSignificant difference vs the group without hypertension.

Progression from MCI to dementia

- Diabetes and Hypertension not related to progression from MCI to dementia

- Caveats:
 - Prevalent vs incident MCI
 - Short follow-up time
 - Temporal relationship between risk factor and MCI
Risk factors and cognitive decline

- Persons with diabetes had lower memory and executive scores at baseline and follow-up, but the slopes of decline were parallel (evidenced by a non-significant interaction term for time and diabetes from mixed models).
- Persons with hypertension had a similar pattern for decline in executive scores.
Limitations

• Misclassification of dementia subtype
• Stability of MCI diagnosis
• Old age vs middle age
 – Lines of cognitive decline may have “split” before onset of follow-up
• Measurement of risk factors
 – Lack of proper measures of severity and duration
 – Bias towards the null
Conclusions

- Diabetes is related to both amnestic and non-amnestic forms of cognitive impairment
- Hypertension seems to be related mostly to non-amnestic forms of cognitive impairment
- These associations are consistent with different but related outcomes in the natural history of cognitive decline
Conclusions

• These associations appear to depend on insults that began before the time of observation
• Thus, studies in younger age groups are needed
• Specific NS domains could be used as early proxies for future cognitive impairment diagnoses
Acknowledgements

WHICAP (R01 AG037212)
Richard Mayeux, MD
Rafael Lantigua, MD
Nicole Schupf, PhD
Jennifer Manly, PhD
Ming X. Tang, PhD
Christiane Reitz, MD
Adam Brickman, PhD
Howards Andrews, PhD
Scott Small, MD
Domenico Accilli, MD (DERC)

Funding
– National Institute on Aging
– New York City Council Speaker’s fund for Public Health Research
– Fidelity foundation
– Alzheimer’s Association
– Center for Medicare Services
– Institute for the Study of Aging
– Florence and Herbert Irving Clinical Research Scholars Program
- American Diabetes Association
Take a deep breath!
Cognitive scores

• Memory: Selective Reminding Test and BVRT recognition;
• Language: (15-item Boston Naming Test, BDAE repetition, and BDAE comprehension);
• Executive function: (Mattis Identities and Oddities, raw score on Wechsler Adult Intelligence Scale–Revised Similarities subtest, and category and letter fluency);
• Visuospatial skill: (Rosen Drawing Test and BVRT matching)
Risk factor in relation to cognitive decline

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interaction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk factor in relation to cognitive decline

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interaction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>