Some Considerations about Targeted Clinical Trials Designs Based on Biomarkers

Lon S. Schneider, MD, MS

Data core leader – NOT
Clinical core leader - Yes

University of Southern California ADRC, Los Angeles

ADC Data Core Leaders’ Meeting
Boston
October 6, 2012
Disclosures

• Grant/Research Support
 – Industry:
 • Pfizer (ADCS), Baxter (ADCS), Genentech, Eli Lilly, Novartis
 – NIH:
 • USC ADRC, ADCS, ADNI, phytoSERMs, AD trials simulations, others
 – State of California:
 • AD Program, California Institute for Regenerative Medicine (CIRM)

• Consultant
 – Industry:
 • Abbott, AC Immune, Accera, Allergan, Allon, AstraZeneca, BiogenIdec, Elan, EnVivo, Exonhit, Genentech, GSK, Helicon, Ipsen, J & J, Kirin, Eli Lilly, FDA, Lundbeck, Merck, Myriad, Pain, Pfizer, Roche, Schwabe, Servier, SK Life Sciences, Takeda, Targacept, TauRx, Toyama, Zinfandel
 – Other:
 • Editorial boards for The Lancet Neurology, Cochrane Collaboration; other journals; the APA practice guidelines in AD, and guidelines committees for the American Association for Geriatric Psychiatry, American Geriatrics Society, World Federation of Societies of Biological Psychiatry; expert witness or consultant in civil and criminal federal and state cases for plaintiffs against Lilly, J & J, Pfizer; and for defendants AstraZeneca, Pfizer, California Dept of Justice, and US attorneys general
Disclaimers

• All observers are not led by the same physical evidence to the same picture of the universe

 -- Benjamin Lee Whorf
 Theory of linguistic relativity (1940)

• It is often much worse to have good measurement of the wrong thing--especially when, as is so often the case, the wrong thing will *in fact* be used as an indicator of the right thing--than to have poor measurement of the right thing.

 -- John W. Tukey
 Exploratory Data Analysis (1977)

• Ham sandwich theorem

 -- Stone and Tukey (1943)
Issues with MCI and AD Trials

• Various expert-driven new diagnostic criteria that are biomarker-dependent and not yet determined to be helpful for trials
• Too many, (mainly) industry-driven drug targets
• Various expert- and historically-driven clinical outcomes that are selectively employed in trials
• Several ‘standard,’ but unvalidated-for-purpose, biomarkers are used variously for diagnosis, predicting outcomes, and as surrogate or supportive outcomes
Diagnostic Consensus?

Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria

Bruno Dubois, Howard I. Feldman, Claudia Jacova, Jeffrey L. Cummings, Steven T. DeKosky, Pascale Barberger-Gateau, Andrea Delacourte, Dooguo Galasko, Serge Gauthier, Gregory Jicha, Karin de Mancini, John O'Brien, Florence Pasquier, Philippe Robert, Martine Rossor, Steven Salloway, Yvonne Stor, Pietro Vellas, Philip Scheuner

The NINCDS-ADRDA and the DSM-IV-TR criteria for Alzheimer's disease (AD) are standards in research; however, they have now fallen behind the unprecedented growth of sensitive and reliable biomarkers of AD that are now available through structural MRI, novel PET, and cerbrospinal fluid analyses. This progress provides the impetus for our proposed criteria for AD. Our framework was developed to capture both the earliest stages, before the full spectrum of the illness. These new criteria are based on a clinical core of core memory impairment. Clinicians must also use at least one or more about structural neuroimaging with MRI, molecular neuroimaging with PET, and cerbrospinal fluid proteins. The timeliness of these criteria is highlighted by the many drugs in development.

Revising the definition of Alzheimer's disease: a new lexicon

Bruno Dubois, Howard I. Feldman, Claudia Jacova, Jeffrey L. Cummings, Steven T. DeKosky, Pascale Barberger-Gateau, Andrea Delacourte, Giovanni Frisoni, Nick C. Fox, Dooguo Galasko, Serge Guathier, Howard Hampel, Gregory Jicha, Karin de Mancini, John O'Brien, Florence Pasquier, Philippe Robert, Martine Rossor, Steven Salloway, Marie Sanoz, Leonardo de Seo, Yvonne Stor, Pietro Vellas, Philip Scheuner

Alzheimer's disease (AD) is classically defined as a dual clinicopathological entity. The recent advances in use of reliable biomarkers of AD that provide in vivo evidence of the disease has stimulated the development of new research criteria that reconceptualize the diagnosis around both a specific pattern of changes and structural/biological evidence of Alzheimer's disease and related conditions. AD aims to advance this by proposing a conceptual framework to expand the definition of AD.

The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease

Marilyn S. Albert, Steven T. DeKosky, Dennis Dickson, Bruno Dubois, Howard H. Feldman, Nick C. Fox, Anthony Gamsb, David M. Holtzman, William J. Jagust, Ronald C. Petersen, Peter J. Snyder, Maria C. Carrillo, Bill Thies, Creighton H. Phelpsb

The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease

Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease

The International Working Group for New Research Criteria for the Diagnosis of AD:

- Framework to capture the earliest stages...
- Must be at least one or more abnormal biomarkers
- Timeliness is highlighted by the many drugs in development that are directed at particularly at the production and clearance of Aβ
- Validation studies … are needed to advance these criteria
Consensus on Diagnosis (2011)?

- **The Alzheimer’s Association criteria**
 - Preclinical
 - MCI associated with AD
 - AD (The new McKhann et al criteria)

- **Common elements are specific putative biomarkers**

Biomarkers of brain β amyloidosis
- Increased uptake on amyloid imaging with PET*
- Decreased CSF amyloid β_{42}*

Biomarkers of neuronal injury (synaptic dysfunction and neuronal degeneration)
- Temporoparietal hypometabolism on 18F-fluorodeoxyglucose PET*
- Medial temporal (hippocampal) atrophy*
- Increased CSF tau/phospho-tau*
- Temporoparietal hypoperfusion on single-photon emission CT

Other less validated biomarkers, biomarkers of collateral damage, or serial biomarkers
- Functional MRI activation studies, resting blood oxygen level-dependent functional connectivity, MRI perfusion, MR spectroscopy, diffusion tensor imaging
- Inflammatory (cytokines) and oxidative stress biomarkers (isoprostanes)
- Rates of brain atrophy
(Too Many?) Potential Aβ Targets for ‘Disease-modifying’ Therapies for AD

• **Aβ production**
 – α-secretase enhancement
 – β-secretase inhibition
 – γ-secretase inhibition
 – γ-secretase modulation

• **Aβ degradation**
 – Neprilysin activation
 – Insulin-degrading enzyme (IDE) activation

• **Aβ removal**
 – Vaccination
 – Passive immunization
 – Enhance receptor-mediated removal from CNS
 – Prevent entry from periphery

• **Preventing Aβ toxicity**
 – Prevent aggregation via Aβ binding
 – Prevent oligomerization (e.g., metal attenuation of proteins)

• **Tau**
 – Prevent tau aggregation, prevent tau hyperphosphorylation, facilitate tau phosphatases, stabilize microtubules

• **Neuroprotection**
 – Growth factor treatment or GF receptors activation, anti-apoptotic agents, metabolic/mitochondrial agents, block inflammation disease processes

• **Neuroregeneration**

Issues to Address

• Causes of AD are not known
• No validated drug targets
• Where and when along the process could drugs work?
 – Early or late in the amyloid cascade?
 – Early or late in the clinical course?
 – An early intervention may not show a discernable effect for years or could show one immediately
• Do targets change over course of illness?
• Do outcomes differ for any given drug?
‘Standard’ biomarkers are informed by amyloid burden, tangles, and neuron loss

Modified from Hyman et al 2011
Phase 2 and 3 Trials Use Biomarkers to Predict or Assess Outcomes

- Rosiglitazone (Avandia), phase 2 and 3
 - ApoE carrier status

- Semagacestat, phase 2 and 3
 - CSF Aβ and tau
 - 40% decrease in Aβ in blood not in CSF

- Bapineuzumab, phase 2 and 3
 - Aβ PET, APOE

- Scyllo-inositol, phase 2
 - CSF Aβ and tau

- Solanezumab, phase 2 and 3
 - CSF Aβ and tau
Ongoing phase 2 targeted designs uses biomarker for entry

- **GSI: BMS 708163**
 - Prodromal AD, MMSE 24-30, plus $A\beta$ +
 - 75 sites, $N = 270$, 1 dose and placebo, 2-year follow-up (but 2 highest doses dropped)
 - Primary: safety and CSF markers
 - “ADNI knock-off”

- **mAb: Gantenerumab (Roche)**
 - Prodromal AD, MMSE > 23, $A\beta$-PET positive
 - 63 ex-US sites, $N = 360$, 2 doses and placebo, 2-year follow-up
 - Primary: CDR-sb and $A\beta$ change

- Is this the new normal for trials?
Trials Outcomes Analyzed by ApoE Status

- Rosiglitazone
- Tarenflurbil
- Bapineuzumab phase 2
- Bapinuzumab phase 3
- Future trials
 - Solanezumab
 - BMS
 - Roche
 - Pioglitazone (Takeda/Zinfandel)

- Apparent rationale:
 - To suggest differential outcomes with biomarkers
 - The idea that there must be subgroups of drug-responsive patients
Bapineuzumab 201 Trial

Bapineuzumab also showed a statistically significant impact on cognition, particularly in ApoE4 non-carriers.

Bapineuzumab Phase II data in ApoE4 non-carriers

Source: Johnson and Johnson presentation – 26/04/2011
Bapineuzumab 301 and 302 Trials

Change in ADAS-Cog 11 by Treatment Group Over 78 Weeks (APOE \(\varepsilon4\) Carriers)

(mITT population)

<table>
<thead>
<tr>
<th>Treatment Difference at Week 78</th>
<th>Bapineuzumab Mean (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mg/kg</td>
<td>-0.2 (-1.4, 1.0)</td>
<td>0.798</td>
</tr>
</tbody>
</table>

Improvement

Mean (+/-SE) Change from Baseline

Weeks

MMRM (mixed model for repeated measures) analysis. Error bars represent 1 SE.

European Federation of Neurological Societies, Stockholm – September 11, 2012

APOE \(\varepsilon4\) carriers

APOE \(\varepsilon4\) non-carriers

Simulating Stratified Medicine, Targeted Design Trials in MCI and AD with Aβ and ApoE Markers

Lon S. Schneider, MD, Richard E. Kennedy, MD, PhD, Gary R. Cutter, PhD

University of Southern California Keck School of Medicine, Los Angeles, CA, University of Alabama at Birmingham, Birmingham, AL, USA.

ISCTM Autumn Meeting
October 3, 2012
Marina del Rey, California
Background for Aβ Targeted Design

• Proposed criteria for prodromal or early AD requires a positive biomarker

• *ad hoc* groups recommend that clinical trials for prodromal AD would be more efficient if a CSF Aβ$_{42}$ biomarker were required

 – “to show a 40% reduction in progression on ratings, with 80% power, an alpha error $P \leq 0.05$, and a 2-year drop-out rate < 40% would require about 100 or 150 patients for one or another primary outcome per group when patients are selected [using a CSF Aβ$_{42}$ biomarker] compared to twice as many without the biomarker criteria”

• Therefore: One should test the potential efficiency of these recommendations by simulating a range of clinical trials scenarios
Methods: patient selection and methods

• Use clinical trials datasets to select subjects fulfilling certain clinical trials criteria
• Amnestic MCI criteria or MCI due to AD selected as though they were applying for clinical trials:
 • (1) aMCI diagnosis as above
 • (2) aMCI with CSF Aβ₄₂ ≤ 192 pG/mL
 • (3) aMCI with t-tau/Aβ₄₂ > 0.39
 – Latter two criteria are expert-recommended = “prodromal AD”
• Outcomes: ADAS-cog and CDR-sb performed at 6-month intervals
• Clinical trials scenarios:
 – Sample sizes of 50, 100, 200, and 400 per group
 – 12 and 24 month long trials
 – Dropout rates of 20% and 40% in both groups incorporated into scenarios
• Placebo group outcome:
 – the score for patient at the specified time point in the ADNI database
• Treatment group outcome:
 – effect sizes from 0.15 to 0.75 (i.e., very small to moderately large)
• For each patient:
 – Treatment effect randomly generated from a X² distribution with mean equal to expected effect
 – Each effect was shifted by subtracting 2 times the expected effect, then adding the result to the patient’s score at the specified time point in the database
 – Even when a patient was reused in the analysis the actual value used would be modified by this randomly selected amount
Methods: statistical analysis

- Primary analyses: Mixed effects linear model (covariance pattern model) which adjusts for missing data to test for differences
 - A full model used with group effect, visit effect, and group by visit interactions, with age and gender as covariates, and a reduced model with visit, age, and gender effects. A compound symmetric covariance structure was used to model the correlation between visits for each participant. Parameters estimated using maximum likelihood
 - P-values for the group (treatment) effect were found using -2 times the difference in the log likelihood of the models which follows a χ^2-square distribution with the appropriate degrees of freedom
- Secondary analyses: LOCF and complete cases (not further discussed)
- The missing data pattern present in ADNI was used to simulate dropouts
- 1000 simulations for each scenario to estimate power to 3 digits
- Power = proportion of 1000 simulated trials per scenario with α error $p \leq 0.05$
- Analyses R 2.10.1 and R nlme package 3.1-89
- Data downloaded Dec 7, 2009: http://www.loni.ucla.edu/twiki/bin/view/ADNI/ADNIClinicalFAQ

Schneider et al Alzh & Dem 2010
Results: Characteristics and ratings by selection criteria
(199 of the 400 aMCI patients had CSF examinations)

<table>
<thead>
<tr>
<th></th>
<th>No marker required</th>
<th>Low $\text{A}\beta_{42}$</th>
<th>High t-τ/Aβ_{42}</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>400</td>
<td>148</td>
<td>137</td>
<td>0.84</td>
</tr>
<tr>
<td>Age, years, mean, SD</td>
<td>74.92 (7.41)</td>
<td>74.66 (7.09)</td>
<td>74.66 (7.45)</td>
<td>0.84</td>
</tr>
<tr>
<td>Gender, male %</td>
<td>64.5%</td>
<td>64.9%</td>
<td>62.8%</td>
<td>0.92</td>
</tr>
<tr>
<td>Education, college %</td>
<td>64.3%</td>
<td>62.8%</td>
<td>62.0%</td>
<td>0.92</td>
</tr>
<tr>
<td>APOE e4 genotype %</td>
<td>54.0%</td>
<td>64.2%</td>
<td>66.0%</td>
<td>0.17</td>
</tr>
<tr>
<td>MMSE, baseline, mean (SD)</td>
<td>27.01 (1.78)</td>
<td>26.79 (1.79)</td>
<td>26.83 (1.82)</td>
<td>0.32</td>
</tr>
<tr>
<td>CDR-sb, baseline, mean (SD)</td>
<td>1.61 (0.88)</td>
<td>1.65 (0.91)</td>
<td>1.63 (0.89)</td>
<td>0.95</td>
</tr>
<tr>
<td>CDR-sb, 12mo., mean (SD)</td>
<td>2.27 (1.52)</td>
<td>2.51 (1.39)</td>
<td>2.51 (1.42)</td>
<td>0.03</td>
</tr>
<tr>
<td>CDR-sb, 24mo., mean (SD)</td>
<td>3.06 (2.23)</td>
<td>3.44 (2.14)</td>
<td>3.49 (2.15)</td>
<td>0.03</td>
</tr>
<tr>
<td>ADAS-cog, baseline, (SD)</td>
<td>11.56 (4.42)</td>
<td>12.25 (4.54)</td>
<td>12.41 (4.55)</td>
<td>0.07</td>
</tr>
<tr>
<td>ADAS-cog, 12mo., mean (SD)</td>
<td>12.55 (6.19)</td>
<td>13.34 (5.93)</td>
<td>13.59 (5.92)</td>
<td>0.06</td>
</tr>
<tr>
<td>ADAS-cog, 24mo., mean (SD)</td>
<td>14.12 (7.43)</td>
<td>15.76 (7.08)</td>
<td>15.85 (7.12)</td>
<td>0.01</td>
</tr>
<tr>
<td>Dementia, 24 mo., mean (SD)</td>
<td>28.5%</td>
<td>35.8%</td>
<td>38.0%</td>
<td>0.23</td>
</tr>
</tbody>
</table>

- > 95% classified as ‘MCI due to AD,’ 58% with FH of dementia
- 44.0% used ChEIs, 9% ChEIs+memantine; 53.5% neither
- 96%, 90%, 81%, and 72% had outcomes at 6-, 12-, 18- and 24- mo

Schneider et al Alzh & Dem 2010
Power for ADAS-cog outcomes in 24-month trials

- 20% dropouts
- N Per Group = 50
- N Per Group = 100
- 40% dropouts
- N Per Group = 50
- N Per Group = 100

Schneider et al. Alzh & Dem 2010

- = aMCI
- = aMCI + low Aβ_{42}
- = aMCI + high t-tau/ Aβ_{42}
Power for CDR-sb outcomes in 24-month trials

- 20% dropouts
- 40% dropouts

N Per Group = 50

N Per Group = 100

N Per Group = 200

N Per Group = 400

Effect Size

Selection Method:
- ○ = aMCI
- □ = aMCI + low Aβ_{42}
- ◆ = aMCI + high t-tau/ Aβ_{42}

Schneider et al. Alzh & Dem 2010
Power for ADAS-cog in 24-month trials

<table>
<thead>
<tr>
<th>N per Group</th>
<th>Dropout %</th>
<th>Effect Size</th>
<th>Selection Method</th>
<th>Treatment Group Mean</th>
<th>Placebo Group Mean</th>
<th>Treatment Group SD</th>
<th>Placebo Group SD</th>
<th>Power Mixed Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
<td>0.45</td>
<td>aMCI</td>
<td>0.33</td>
<td>2.85</td>
<td>6.03</td>
<td>5.61</td>
<td>0.71</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0.45</td>
<td>Aβ</td>
<td>1.04</td>
<td>3.73</td>
<td>6.25</td>
<td>5.88</td>
<td>0.76</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0.45</td>
<td>t-tau/Aβ</td>
<td>0.99</td>
<td>3.65</td>
<td>6.41</td>
<td>5.94</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.32</td>
<td>2.85</td>
<td>6.08</td>
<td>5.65</td>
<td>0.78</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.05</td>
<td>3.71</td>
<td>6.28</td>
<td>5.86</td>
<td>0.83</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>0.96</td>
<td>3.64</td>
<td>6.40</td>
<td>5.95</td>
<td>0.85</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.89</td>
<td>3.68</td>
<td>6.18</td>
<td>5.86</td>
<td>0.71</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.57</td>
<td>3.65</td>
<td>6.30</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>0.96</td>
<td>3.64</td>
<td>6.40</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.89</td>
<td>3.68</td>
<td>6.18</td>
<td>5.86</td>
<td>0.71</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.57</td>
<td>3.65</td>
<td>6.30</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>0.96</td>
<td>3.64</td>
<td>6.40</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.89</td>
<td>3.68</td>
<td>6.18</td>
<td>5.86</td>
<td>0.71</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.57</td>
<td>3.65</td>
<td>6.30</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>0.96</td>
<td>3.64</td>
<td>6.40</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.89</td>
<td>3.68</td>
<td>6.18</td>
<td>5.86</td>
<td>0.71</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.57</td>
<td>3.65</td>
<td>6.30</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>0.96</td>
<td>3.64</td>
<td>6.40</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.89</td>
<td>3.68</td>
<td>6.18</td>
<td>5.86</td>
<td>0.71</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.57</td>
<td>3.65</td>
<td>6.30</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>0.96</td>
<td>3.64</td>
<td>6.40</td>
<td>5.95</td>
<td>0.73</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.25</td>
<td>aMCI</td>
<td>1.45</td>
<td>2.86</td>
<td>5.92</td>
<td>5.63</td>
<td>0.81</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.25</td>
<td>Aβ</td>
<td>2.23</td>
<td>3.70</td>
<td>6.15</td>
<td>5.88</td>
<td>0.84</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.25</td>
<td>t-tau/Aβ</td>
<td>2.17</td>
<td>3.68</td>
<td>6.23</td>
<td>5.98</td>
<td>0.87</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.25</td>
<td>aMCI</td>
<td>0.86</td>
<td>2.85</td>
<td>6.00</td>
<td>5.66</td>
<td>0.71</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.25</td>
<td>Aβ</td>
<td>1.67</td>
<td>3.70</td>
<td>6.27</td>
<td>5.89</td>
<td>0.77</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.25</td>
<td>t-tau/Aβ</td>
<td>1.54</td>
<td>3.68</td>
<td>6.32</td>
<td>6.00</td>
<td>0.76</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>1.46</td>
<td>2.86</td>
<td>5.92</td>
<td>5.63</td>
<td>0.93</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>2.25</td>
<td>3.73</td>
<td>6.14</td>
<td>5.88</td>
<td>0.94</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>2.16</td>
<td>3.67</td>
<td>6.23</td>
<td>6.00</td>
<td>0.95</td>
</tr>
</tbody>
</table>

To ensure an approximate power of 80% to 90% for the mixed model analysis, simulations show that for small effects of 0.25, typical to that of cholinesterase inhibitors, somewhat fewer than 400 patients per group are needed with a dropout rate of 20%, and for medium size effects of 0.45, somewhat greater than 100 per group are needed with a dropout rate of 20%. Requiring low Aβ₁₋₄₂ biomarker ("Aβ") or high total tau to Aβ₁₋₄₂ ratio ("t-tau/Aβ") in the selection criteria resulted in very small increases in statistical power; these participants showed greater placebo decline but also increased variability, i.e., standard deviation of change. Simulation parameters included α=0.05, effect sizes of 0.15 to 0.75 with Chi-squared random errors, and 20% and 40% dropouts with mixed model analysis for participants with missing data.
Power for CDR-sb outcomes in 24-month

<table>
<thead>
<tr>
<th>N per Group</th>
<th>Dropout %</th>
<th>Effect Size</th>
<th>Selection Method</th>
<th>Treatment Group Mean</th>
<th>Placebo Group Mean</th>
<th>Treatment Group SD</th>
<th>Placebo Group SD</th>
<th>Power Mixed Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>20</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.91</td>
<td>1.48</td>
<td>2.22</td>
<td>1.97</td>
<td>0.69</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.22</td>
<td>1.83</td>
<td>2.23</td>
<td>1.94</td>
<td>0.76</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>1.30</td>
<td>1.90</td>
<td>2.23</td>
<td>1.93</td>
<td>0.75</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.45</td>
<td>aMCI</td>
<td>0.73</td>
<td>1.48</td>
<td>2.22</td>
<td>1.98</td>
<td>0.89</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.45</td>
<td>Aβ</td>
<td>1.04</td>
<td>1.83</td>
<td>2.26</td>
<td>1.94</td>
<td>0.92</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>0.45</td>
<td>t-tau/Aβ</td>
<td>1.11</td>
<td>1.91</td>
<td>2.25</td>
<td>1.93</td>
<td>0.90</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.45</td>
<td>aMCI</td>
<td>0.73</td>
<td>1.48</td>
<td>2.20</td>
<td>1.96</td>
<td>0.79</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.45</td>
<td>Aβ</td>
<td>1.03</td>
<td>1.83</td>
<td>2.24</td>
<td>1.94</td>
<td>0.84</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.45</td>
<td>t-tau/Aβ</td>
<td>1.11</td>
<td>1.92</td>
<td>2.25</td>
<td>1.93</td>
<td>0.86</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.25</td>
<td>aMCI</td>
<td>1.05</td>
<td>1.48</td>
<td>2.16</td>
<td>1.98</td>
<td>0.76</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.25</td>
<td>Aβ</td>
<td>1.39</td>
<td>1.83</td>
<td>2.15</td>
<td>1.94</td>
<td>0.79</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.25</td>
<td>t-tau/Aβ</td>
<td>1.46</td>
<td>1.90</td>
<td>2.15</td>
<td>1.94</td>
<td>0.77</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.91</td>
<td>1.48</td>
<td>2.24</td>
<td>1.98</td>
<td>0.93</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.22</td>
<td>1.83</td>
<td>2.23</td>
<td>1.95</td>
<td>0.95</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>1.30</td>
<td>1.90</td>
<td>2.23</td>
<td>1.93</td>
<td>0.95</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.25</td>
<td>aMCI</td>
<td>1.05</td>
<td>1.48</td>
<td>2.16</td>
<td>1.98</td>
<td>0.68</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.25</td>
<td>Aβ</td>
<td>1.39</td>
<td>1.83</td>
<td>2.16</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.25</td>
<td>t-tau/Aβ</td>
<td>1.46</td>
<td>1.91</td>
<td>2.15</td>
<td>1.94</td>
<td>0.72</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.35</td>
<td>aMCI</td>
<td>0.91</td>
<td>1.48</td>
<td>2.23</td>
<td>1.99</td>
<td>0.88</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.35</td>
<td>Aβ</td>
<td>1.22</td>
<td>1.83</td>
<td>2.23</td>
<td>1.94</td>
<td>0.89</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>0.35</td>
<td>t-tau/Aβ</td>
<td>1.29</td>
<td>1.91</td>
<td>2.23</td>
<td>1.93</td>
<td>0.91</td>
</tr>
</tbody>
</table>

To ensure an approximate power of 80% to 90% for the mixed model analysis, simulations show that for small effects of 0.25, somewhat more than 400 patients per group are needed with a dropout rate of 20%, and for medium size effects of 0.45, somewhat less than 200 per group are needed with a dropout rate of 20%. Requiring low amyloid-β$_{1-42}$ biomarker ("Aβ") or high t-tau/Aβ$_{1-42}$ ("t-tau/Aβ") as selection criteria resulted in very small increases in statistical power. Gain in power was less prominent as total power increased. Simulation parameters included $\alpha=0.05$, effect sizes of 0.15 to 0.75 with Chi-squared random errors, and 20% to 40% dropouts analyzed with mixed model analysis for participants with missing data.
Targeted Trials Based on ApoE Genotype
ADCS Studies Used and ADNI

<table>
<thead>
<tr>
<th>Study, dates</th>
<th>Design</th>
<th>Intervention</th>
<th>N</th>
<th>Duration (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selegiline, vit E, 1993-1996</td>
<td>severe AD</td>
<td>Vitamin E, selegiline</td>
<td>341</td>
<td>24</td>
</tr>
<tr>
<td>Prednisone 1995-1998</td>
<td>mild to mod AD</td>
<td>Prednisone</td>
<td>138</td>
<td>16</td>
</tr>
<tr>
<td>CE 1995-1999</td>
<td>mild to mod AD</td>
<td>Conjugated estrogens</td>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>MIS 1999-2004</td>
<td>MCI</td>
<td>Donepezil, vit E</td>
<td>769</td>
<td>36</td>
</tr>
<tr>
<td>Simvastatin (LL) 2003-2008</td>
<td>mild to mod AD</td>
<td>Simvastatin</td>
<td>406</td>
<td>18</td>
</tr>
<tr>
<td>Vitamins B (HC) 2003-2007</td>
<td>mild to mod AD</td>
<td>B vitamins</td>
<td>409</td>
<td>18</td>
</tr>
<tr>
<td>DHA 2006-2009</td>
<td>mild to mod AD</td>
<td>DHA</td>
<td>402</td>
<td>18</td>
</tr>
<tr>
<td>ADNI 2005-2010</td>
<td>Observational, mild AD, MCI</td>
<td>None</td>
<td>800</td>
<td>36 (AD) 48 (MCI)</td>
</tr>
</tbody>
</table>
Clinical characteristics among AD and MCI participants by ApoE4 carrier status

<table>
<thead>
<tr>
<th>Mild to Moderate AD Overall</th>
<th>E4-</th>
<th>E4+</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>(N=545)</td>
<td>(N=873)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>1368</td>
<td>75.8 (9.5)</td>
<td>74.7 (7.7)</td>
</tr>
<tr>
<td>Educ, yrs</td>
<td>1374</td>
<td>14.2 (3.3)</td>
<td>14.2 (2.9)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1374</td>
<td>31 (6%)</td>
<td>32 (4%)</td>
</tr>
<tr>
<td>Married</td>
<td>1411</td>
<td>367 (67%)</td>
<td>654 (75%)</td>
</tr>
<tr>
<td>White</td>
<td>1374</td>
<td>482 (91%)</td>
<td>769 (91%)</td>
</tr>
<tr>
<td>Female</td>
<td>1374</td>
<td>303 (57%)</td>
<td>451 (53%)</td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>1392</td>
<td>22.3 (9.2)</td>
<td>22.2 (8.7)</td>
</tr>
<tr>
<td>6 mo</td>
<td>1252</td>
<td>23.7 (10.1)</td>
<td>24.3 (9.9)</td>
</tr>
<tr>
<td>12 mo</td>
<td>1129</td>
<td>25 (11)</td>
<td>27 (11)</td>
</tr>
<tr>
<td>18 mo</td>
<td>793</td>
<td>27 (12)</td>
<td>29 (12)</td>
</tr>
<tr>
<td>24 mo</td>
<td>133</td>
<td>26.4 (9.9)</td>
<td>28.8(12.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCI Overall</th>
<th>E4-</th>
<th>E4+</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>(N=544)</td>
<td>(N=648)</td>
<td></td>
</tr>
<tr>
<td>Age, yrs</td>
<td>1134</td>
<td>73.4 (8.2)</td>
<td>72.9 (6.6)</td>
</tr>
<tr>
<td>Educ., yrs</td>
<td>1134</td>
<td>15.0 (3.2)</td>
<td>15.0 (3.1)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1134</td>
<td>27 (5%)</td>
<td>15 (2%)</td>
</tr>
<tr>
<td>Married</td>
<td>1182</td>
<td>394 (73%)</td>
<td>525 (82%)</td>
</tr>
<tr>
<td>White</td>
<td>1134</td>
<td>468 (91%)</td>
<td>580 (94%)</td>
</tr>
<tr>
<td>Female</td>
<td>1134</td>
<td>206 (40%)</td>
<td>271 (44%)</td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>402</td>
<td>10.4 (4.2)</td>
<td>12.1 (4.4)</td>
</tr>
<tr>
<td>6 mo</td>
<td>1038</td>
<td>10.2 (5.2)</td>
<td>12.2 (5.2)</td>
</tr>
<tr>
<td>12 mo</td>
<td>972</td>
<td>10.6 (5.6)</td>
<td>13.0 (5.9)</td>
</tr>
<tr>
<td>18 mo</td>
<td>872</td>
<td>10.8 (5.8)</td>
<td>14.0 (7.0)</td>
</tr>
<tr>
<td>24 mo</td>
<td>814</td>
<td>10.7 (6.5)</td>
<td>14.7 (7.3)</td>
</tr>
</tbody>
</table>
Power for ADAS-cog Outcomes in 18-month AD Trials Based on ApoE Genotype

N Per Group = 100

N Per Group = 200

N Per Group = 300

N Per Group = 400
Power for ADAS-cog Outcomes in 24-month MCI Trials Based on ApoE Genotype

N Per Group = 100

N Per Group = 200

N Per Group = 300

N Per Group = 400

Effect Size

Power

0.2 0.3 0.4 0.5

0.1 0.3 0.5 0.7

0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5

ApoE4 %

0% 20% 40% 60% 80% 100%
A word on effect sizes (and presumed power)
Semantics of Effect Sizes

Table 1. The first two rows simulate clinical trials of prodromal AD (aMCI) and biomarker-positive prodromal AD (low Aβ) with sample sizes of 100 per group, 20% dropouts, effect sizes set at 0.35 SD units, and show resulting percent slope reduction and Power. In the second two rows slope reduction is set at 50% and resulting effect sizes and Power are shown.

<table>
<thead>
<tr>
<th></th>
<th>Baseline ADAS-cog</th>
<th>Treatment Change</th>
<th>Placebo Change</th>
<th>Drug-placebo diff.</th>
<th>Effect size</th>
<th>% slope reduction</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>aMCI</td>
<td>11.6 (4.4)</td>
<td>0.88 (5.92)</td>
<td>2.86 (5.62)</td>
<td>1.98</td>
<td>0.35</td>
<td>69.2</td>
<td>0.56</td>
</tr>
<tr>
<td>Low Aβ_{1-42}</td>
<td>12.2 (4.5)</td>
<td>1.66 (6.18)</td>
<td>3.71 (5.85)</td>
<td>2.05</td>
<td>0.35</td>
<td>55.2</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Setting effect size at 0.35

<table>
<thead>
<tr>
<th></th>
<th>Baseline ADAS-cog</th>
<th>Treatment Change</th>
<th>Placebo Change</th>
<th>Drug-placebo diff.</th>
<th>Effect size</th>
<th>% slope reduction</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>aMCI</td>
<td>2.86 (5.62)</td>
<td>1.43</td>
<td>2.60 (5.56)</td>
<td>0.53</td>
<td>0.25</td>
<td>50</td>
<td>0.32*</td>
</tr>
<tr>
<td>Low Aβ_{1-42}</td>
<td>3.71 (5.85)</td>
<td>1.86</td>
<td>3.45 (5.69)</td>
<td>0.32</td>
<td>0.32*</td>
<td>50</td>
<td>0.49*</td>
</tr>
</tbody>
</table>

Setting slope reduction at 50%

ES = effect size, calculated as (treatment-placebo change)/standard deviation of placebo change.
*Calculated by Donohue et al using two sample t-test power calculations
Data from Schneider et al

Table 2. Comparison of ADAS-cog and CDR-sb change in placebo groups over 18-months in randomized controlled clinical trials and calculations of effect sizes, based on 50% change in slope

<table>
<thead>
<tr>
<th>Trial</th>
<th>ADAS-cog change, (SD)</th>
<th>50% slope reduction</th>
<th>Slope effect size</th>
<th>Power*</th>
<th>Sample size, 80% Power</th>
<th>CDR-sb change, (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCS trial 1</td>
<td>8.14 (8.68)</td>
<td>4.07</td>
<td>0.47</td>
<td>0.84</td>
<td>184</td>
<td>Not done</td>
</tr>
<tr>
<td>ADCS trial 2</td>
<td>6.54 (8.17)</td>
<td>3.27</td>
<td>0.40</td>
<td>0.71</td>
<td>250</td>
<td>2.51 (2.57)</td>
</tr>
<tr>
<td>Company A trial 1</td>
<td>5.49 (9.39)</td>
<td>2.24</td>
<td>0.24</td>
<td>0.32</td>
<td>686</td>
<td>2.55 (3.03)</td>
</tr>
<tr>
<td>Company A trial 2</td>
<td>4.34 (8.56)</td>
<td>2.17</td>
<td>0.25</td>
<td>0.35</td>
<td>634</td>
<td>2.05 (2.82)</td>
</tr>
<tr>
<td>Company B</td>
<td>7.36 (9.28)</td>
<td>3.68</td>
<td>0.40</td>
<td>0.71</td>
<td>250</td>
<td>2.50 (3.04)</td>
</tr>
<tr>
<td>Company C trial 1</td>
<td>6.44 (8.69)</td>
<td>3.22</td>
<td>0.37</td>
<td>0.64</td>
<td>290</td>
<td>2.43 (3.12)</td>
</tr>
<tr>
<td>Company C trial 2</td>
<td>5.85 (8.86)</td>
<td>2.92</td>
<td>0.33</td>
<td>0.55</td>
<td>364</td>
<td>2.74 (3.17)</td>
</tr>
<tr>
<td>Company D</td>
<td>9.10 (8.33)</td>
<td>4.55</td>
<td>0.55</td>
<td>0.93</td>
<td>134</td>
<td>2.99 (2.92)</td>
</tr>
</tbody>
</table>

Adapted from reference
ES= within group effect size, change/SD
* Power is calculated using two sample t-test power calculations with a 20% dropout estimate
Conclusions and Discussion
‘MCI due to AD’ Results Summary

- 70-74% of aMCI patients were Aβ42 biomarker positive; 54% were ApoE ε4 carriers
- Patients show little mean change, considerable heterogeneity in course
- Little to no difference in power across the 3 MCI inclusion criteria or ApoE carrier status, and AD
- Requiring Aβ42 biomarker criteria or requiring ApoE ε4 carriers (or excluding them) didn’t have much of an effect on power
- Greater mean differences between placebo and treatment with biomarker criteria (for ADAS-cog), BUT there are greater increases in SDs that reduced the standardized effect sizes
Discussion

• Requiring positive biomarkers, whether Aβ or APOE, may select from the extremes of the distribution

• It is unknown if low CSF Aβ$_{42}$ patients or APOE ε4 non-carriers would be more likely to respond to an experimental drug

• The opposite could be true:
 – Targeted design trials that select only low Aβ$_{42}$ patients or ApoE ε4 non-carriers may inadvertently select those who are less likely to benefit

• Targeted clinical trials designs
 – The efficiency of a targeted design depends on the effectiveness of the drug in both the biomarker positive and negative groups, the proportion of biomarker positive patients in the sample, and the accuracy of the assay
 – The proposed treatment must be substantially more effective in the biomarker positive patients than in the excluded biomarker negative group
Conclusions

• Selecting prodromal AD patients for a clinical trial based on CSF $\text{A}\beta_{42}$ or APOE $\epsilon 4$ biomarker criteria will likely identify more severe patients but not enhance trials statistical power.

• Absent a strong rationale to do otherwise it may be more relevant to not require current biomarkers for trials entry *in this setting* and to restrict their use as explanatory or stratification variables *when there are reasons to do so*.

• Modeling, analysis, and simulations might provide a reasonable way to manage design considerations in clinical trials, better than expert opinion, conventional wisdom.
THE END
The 6-month test-retest reliability is 0.86 (the NTB is reported as 0.92)

AD is relentlessly progressive, but not uniformly so. Between 15–22% of patients show only slow or no decline.
(Johnsen et al., 2003; Perrault et al., 2002; Holmes and Lovestone, 2003)
Biomarker Change (Aβ, Tau, HC, Ventrices)
Overarching Context

• Considerable obstacles to translating pre-clinical research to clinical

• Urgency to do more trials with fewer (or more?) patients; to “get a signal” earlier….there are too many drugs and no validated targets

• Clinical trials often don’t turn out as planned, often underpowered to test the hypothesis
 – We blame the statistics, models, sites, placebos, cholinesterase inhibitors, outcomes measures

• We then try to improve the next trial by tweaking, e.g., inclusion criteria, outcomes, follow-ups, and biomarkers

• We believe that this will “reduce heterogeneity”

• These are complex problems and we stand to be disappointed if we rely on simple solutions
Outline

• Background: post hoc analyses of AD trials based on APOE 4 carriage have provided interesting and contradictory results.
 – some results might be due to play-of-chance in underpowered analyses,
 – other results may be due to actual interaction of the drug with the subgroup.
 – APOE 4 is the strongest risk factor for AD and associated with age of onset of AD it has received particular attention for stratified medicine approaches.

• Review trials that published outcomes based on APOE carriage
• Present trials simulations derived from ADNI on Abeta carriage
• Present trials simulations derived from ADCS trials and ADNI that empirically test the efficiency of developing drugs based on trials scenarios of APOE carriage
 – specifically, what might be gained by certain stratified medicine assumptions.

• Conclusions:
 – Previous trials using targeted designs in AD were either misleading or didn't achieve intended purpose.
 – Using an ApoE or Abeta biomarker doesn't affect trials much at all
 – Except hypothetically if you just used E2 carriers (< 10% of AD) then there is little change

• Discuss: the conditions under which targeted designs could work and suggestions on making focused trials better
MCI CSF β_{42} positives (--) and negatives (--)
Featured Articles

Requiring an amyloid-β/42 biomarker for prodromal Alzheimer’s disease or mild cognitive impairment does not lead to more efficient clinical trials

Lon S. Schneider, Richard E. Kennedy, Gary R. Cutter; and the Alzheimer’s Disease Neuroimaging Initiative

Departments of Psychiatry and Neurology, Keck School of Medicine, and Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA

School of Public Health, University of Alabama, Birmingham, AL, USA

Fig. 1. Power for Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) outcomes in 24-month-long trials with 20% dropouts. Power calculations for the ADAS-cog in patients with amnestic mild cognitive impairment (aMCI), with aMCI plus low cerebrospinal fluid (CSF) Aβ42, and aMCI plus high CSF t-tau and Aβ42, by effect size and sample size. Addition of a biomarker selection criterion did not appreciably increase power under any of the scenarios.

Simulation parameters included α = 0.05, χ random errors, and 20% dropouts with nested model analysis for participants with missing data.

Fig. 4. Power for CDR-sb outcomes in 24-month-long trials with 40% dropouts. Power calculations for the CDR-sb in patients with aMCI, aMCI plus low CSF Aβ42, and aMCI plus high CSF-tau/Aβ42 by effect size and sample size. Addition of biomarkers resulted in only small increases in statistical power, mainly with smaller sample sizes and large effect sizes. Simulation parameters included α = 0.05 with 24-month-long trials, χ random errors, and 40% dropouts with nested model analysis for participants with missing data.
ADNI MCI CSF $\text{A}$$\beta_{42}$ positives (--) and negatives (--)
AD studies: ADNI, DHA, ES, HC, and PR, for ADAS-cog N =1042 at baseline, 906 at month 6, 816 at month 12, 688 at month 18, and 133 at month 24; for CDRsb, there are 1057 at baseline, 970 at month 6, 899 at month 12, 749 at month 18, and 133 at month 24
Limitations

• Results depend on the extent that ADNI represents clinical trials sample
• Substantial majority of MCI and AD patients already had low $\text{A}\beta_{42}$ and high t-tau/ $\text{A}\beta_{42}$ and are APOE $\epsilon4$ carriers
• Precision, timing and standardization of the assay?
• Using other cutoffs for biomarkers, other selection criteria may give different results and provoke different considerations