Energy Failure and Mitochondrial Cascades in Alzheimer’s Disease

Russell Swerdlow, MD

Gene and Marge Sweeney Professor
Director, University of Kansas Alzheimer’s Disease Center
University of Kansas
Overview: Energy Metabolism in AD

• AD is associated with alterations in
 – FDG PET
 – mitochondrial enzymes
 – mtDNA
 – mitochondrial mass and maintenance

Cause versus consequence?
Possible Causal/Upstream Role?

- Energy metabolism changes with *age*
- Inter/intra tissue *selective vulnerability*
- Endophenotypes suggest *early event*
- *Histopathology* associations
- Allow for *sporadic genetics* and *lifestyle* impact
- Changes present outside the brain
Mitochondrial Cascade Hypothesis

Inheritance Determines Baseline Mitochondrial Function and Durability

Mitochondrial Function Declines with Age

A Functional Threshold is Reached

Tau Phosphorylation, Tangle Formation
Aβ Production and Plaque Deposition
Synaptic Loss And Degeneration

Swerdlow et al, BBA 1014;1842:1219-1231.
Differences in AD versus control brains also observed in AD versus control cybrid lines

- Low cytochrome oxidase Vmax activity
- Increased oxidative stress markers
- Increased Aβ
- Activated stress signaling pathways
- Reduced PGC1α mRNA
- Reduced HIF1α protein
- Activated apoptotic signaling
- NFκB activation
- Overall increased COX2 protein
- Reduced mTOR protein
- Increased mitochondrial fission
- Decreased SIRT1
- Decreased O2 consumption
- Decreased glucose utilization
Mitochondrial Function Declines with Age

A Functional Threshold is Reached

Tau Phosphorylation, Tangle Formation

Aβ Production and Plaque Deposition

Synaptic Loss And Degeneration

Inheritance Determines Baseline Mitochondrial Function and Durability

Mitochondrial Cascade Hypothesis
Figure. Cumulative risk of primary progressive dementia (PPD) in mothers and fathers of AD probands. By age 90, the cumulative risk of PPD is estimated to be 27.7% for mothers and 12.7% for fathers.

Maternally-Inherited AD Endophenotypes

<table>
<thead>
<tr>
<th>Endophenotype</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDG PET</td>
<td>Mosconi et al, 2007; Mosconi et al, 2009</td>
</tr>
<tr>
<td>Arterial Spin Labeling</td>
<td>Okonkwo et al, 2014</td>
</tr>
<tr>
<td>Amyloid Imaging</td>
<td>Mosconi et al, 2010; Honea et al 2012</td>
</tr>
<tr>
<td>Cognition</td>
<td>Debette et al, 2009</td>
</tr>
<tr>
<td>Cytochrome Oxidase</td>
<td>Mosconi et al, 2011</td>
</tr>
</tbody>
</table>
Cytochrome Oxidase Endophenotype

Non-Synonymous mtDNA Changes in the KU ADC Cohort

Table 1. mtDNA sequencing of Clinical Cohort subjects (blood-derived mtDNA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AD</th>
<th>CN</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times that a SNP/mutation was overrepresented in the AD or Control group</td>
<td>16 of 23 times</td>
<td>7 of 23 times</td>
<td><0.05</td>
</tr>
<tr>
<td>Times that a non-synonymous SNP/mutation was overrepresented in the AD or Control group</td>
<td>4 of 4 times</td>
<td>0 of 4 times</td>
<td></td>
</tr>
<tr>
<td>Subjects with a non-synonymous SNP/mutation</td>
<td>25/85 (29%)</td>
<td>15/170 (9%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>APOE4 with a non-synonymous SNP/mutation</td>
<td>20/55 (36%)</td>
<td>3/44 (7%)</td>
<td>0.0006</td>
</tr>
</tbody>
</table>
Table 4

Association of maternal vs paternal dementia and Alzheimer disease (AD) with baseline logical memory and visual reproduction scores, among APOE ε4 carriers

<table>
<thead>
<tr>
<th></th>
<th>Maternal dementia</th>
<th>Maternal AD</th>
<th>Paternal dementia</th>
<th>Paternal AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>159</td>
<td>159</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>LM-d</td>
<td>-2.18 ± 0.64</td>
<td>$<-0.001^*$</td>
<td>-1.82 ± 0.70</td>
<td>0.009*</td>
</tr>
<tr>
<td>VR-d</td>
<td>-1.86 ± 0.57</td>
<td>$<-0.001^*$</td>
<td>-1.75 ± 0.63</td>
<td>0.005*</td>
</tr>
</tbody>
</table>

Apolipoprotein E

Mahley et al, PNAS 2006;103:5644-5651.

Chen et al, JBC 2011;286:5215-5221.

Mitochondrial Cascade Hypothesis

Inheritance Determines Baseline Mitochondrial Function and Durability

Mitochondrial Function Declines with Age

A Functional Threshold is Reached

- Tau Phosphorylation, Tangle Formation
- Aβ Production and Plaque Deposition
- Synaptic Loss And Degeneration
Aging and the Brain

Mutational Burden vs Age

CO activity vs. age

CO activity vs. aggregate mtDNA mutational burden

Mitochondrial Cascade Hypothesis

Inheritance Determines Baseline Mitochondrial Function and Durability

Mitochondrial Function Declines with Age

A Functional Threshold is Reached

Tau Phosphorylation, Tangle Formation
Aβ Production and Plaque Deposition
Synaptic Loss And Degeneration
Mitochondria-Amyloid Relationships

Fukui et al. PNAS 2007;104:14163-14168

Kukreja et al. Mol Neurodegen 2014;9:16
Respiratory Flux and APP Processing

Gabuzda et al, JBC 1994;269:13623-13628.
Energy Metabolism-\(A\beta\) Nexus

Aerobic Metabolism Challenged
Limited Mitochondrial Defect
Increased Synaptic Activity
Awake

Upregulate/Increase
Aerobic Metabolism

More \(A\beta\) Production

Aerobic Metabolism De-emphasized
Profound Mitochondrial Defect
Decreased Synaptic Activity
Asleep

Downregulate/Decrease
Aerobic Metabolism

Less \(A\beta\) Production
Example of Mito-Tau Interaction

Zhao et al, Neuron 2015;87:963-975.
Predictions

• Bioenergetic changes promote Aβ in run-up to clinical AD
• Age-related pattern of up (compensated) then down (uncompensated) aerobic metabolism
• Aging to AD transition=Compensated to Uncompensated
• Translation: Enhance brain energy metabolism?
• Compensation initiates histology changes
• Biomarkers reflect brain bioenergetics/aging

Acknowledgments

University of Kansas Alzheimer’s Disease Center

Cited investigators/Investigations

CSF Aβ42 Levels Vary With Age

APOE4 Attenuates Age-Related CSF Aβ Increase

Figure. Cerebrospinal fluid (CSF) β-amyloid 42 (Aβ42) (A) and Aβ40 (B) concentrations by age and apolipoprotein E (APOE*4) allele status in 184 normal adults aged 21 to 88 years. Closed triangles represent APOE*4-positive subjects; A = Loess-fitted line for APOE*4-positive subjects. Open circles represent APOE*4-negative subjects; B = Loess-fitted line for APOE*4-negative subjects.

ISF Aβ Correlates with Coma and Recovery

Spearman $r = 0.82$, $P<0.0001$
for $|\text{Change in GCS}| \geq 2$

Aβ: Part of a Synapse Negative Feedback Loop?

Figure 7. Negative Feedback Model Indicating Proposed Interaction between Neural Activity and APP Processing

Neural activity regulates β-secretase actions on APP. Formation of Aβ depresses synaptic transmission. Synaptic depression decreases neural activity.