New data at NIAGADS

ADSP Data and how to link to your ADC information

NIAGADS Genomics DB
Datasets at NIAGADS

34 datasets | 49,000 subjects | 30 billion genotypes

- **16 GWAS**
- 1 eGWAS
- 1 Expression
- 1 Linkage
- 9 Genotyping (<100K)
- 6 Summary Statistics
- 1 Whole Exome Sequencing
- 11 GWAS datasets with Imputation

Incoming Datasets:
- 2 Targeted Sequencing
- 3 GWAS
- 3 Summary Statistics
- 1 Exome Chip
- 1 PSP WES
- 2 Linkage
ADSP Data

- Raw data are available
 - WGS: 578 individuals / 111 multiplex families
 - WES: 10,939 samples/10,959 individuals
 - 3,264 WES are ADC subjects

- Genotypes
 - WGS: July
 - WES: October/November

- See ADSP website (www.niagads.org/adsp) for more information on
 - Study design
 - Apply for data access
Apply for ADSP data access

Go to www.niagads.org/adsp, click Apply for Data

- All applications submitted to dbGaP, reviewed by NIH
- ADSP requires:
 - **Secondary/derived data return plan** that will be generated by your study and deposited into NIAGADS
 - Signed **NIA Data Sharing Plan** and **NIAGADS Data Distribution Agreement** for ADSP
- Contact NIAGADS (data@niagads.org) for data application, we’d be glad to help step-by-step
Linking ADSP WES ADC samples

- ADSP WES data are labeled using ADSP IDs

es.g. A-ADC-AD003257-BR-NCR-08AD11443

- ADCs can link with their own phenotypic data with these steps:

 - Contact NIAGADS (data@niagads.org) if you plan to link the samples and we’ll walk you through the process
NIAGADS Genomics Database

Welcome to the NIAGADS Genomics Database

A simple, but powerful, workspace for browsing and identifying genes, SNPs, and genomic regions with special relevance to Alzheimer's Disease.

- Search the GenomicsDB
- View a genomic region
Quickly access curated annotations for known genes, SNPs, and genomics regions.

With a single-click, **discover** SNPs with GWAS significance in published NIAGADs datasets.
Bookmark records or add to a basket

Link to other databases with a single click.

Quickly find significant SNPs
Additional Search Functions

GENES

FIND A SNP
Enter a dbSNP rs identifier to view details and curated annotations for a specific SNP.

SNPs

rs6656401
Go
More

GENOMIC REGIONS

Enter a genomic region
Go

Sample Strategies
Upload a list of locations

Expressed Enhancers

Brain-specific expression?
chr19:35409039..65412650

FIND EXPRESSED ENHANCERS WITHIN A REGION OF INTEREST
Search pre-defined enhancer sets for brain-relevant tissues and cells from PANTOM5.
Enter a genomic location in the format chrH:start-end (e.g., chr19:35409039..65412650) to find all expressed enhancers within that region.

Explore further to make novel discoveries
Explore and Analyze Gene Functions

My Strategies:
- New
- Opened (2)
- All (2)
- Basket
- Public Strategies (0)

Strategy: Genes associated with SNPs with GWAS Significance in IGGAP 2013

59 Genes from Step 2

Strategy: Genes associated with SNPs with GWAS Significance in IGGAP 2013

Genome overview

<table>
<thead>
<tr>
<th>Gene</th>
<th>Location</th>
<th>Sequence</th>
<th>Chromosome</th>
<th>#Genes</th>
<th>Length</th>
<th>Gene Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA7</td>
<td>chr1:10465</td>
<td>NC_000010</td>
<td>chr1</td>
<td>3</td>
<td>249256621</td>
<td></td>
</tr>
<tr>
<td>ADGRF2</td>
<td>chr6:4762</td>
<td>NC_000021</td>
<td>chr2</td>
<td>1</td>
<td>245199373</td>
<td></td>
</tr>
<tr>
<td>APOC1</td>
<td>chr18:4543</td>
<td>NC_000006</td>
<td>chr6</td>
<td>5</td>
<td>171115067</td>
<td></td>
</tr>
<tr>
<td>APOC1P1</td>
<td>chr18:4543</td>
<td>NC_000071</td>
<td>chr7</td>
<td>5</td>
<td>159138663</td>
<td></td>
</tr>
<tr>
<td>APOC2</td>
<td>chr18:4544</td>
<td>NC_000008</td>
<td>chr8</td>
<td>3</td>
<td>146364022</td>
<td></td>
</tr>
<tr>
<td>APOC4</td>
<td>chr18:4544</td>
<td>NC_000019</td>
<td>chr11</td>
<td>8</td>
<td>135006516</td>
<td></td>
</tr>
<tr>
<td>APOC1.1</td>
<td>chr18:4544</td>
<td>NC_000014</td>
<td>chr14</td>
<td>2</td>
<td>107349540</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_000019</td>
<td>chr19</td>
<td>28</td>
<td>59128983</td>
<td></td>
</tr>
</tbody>
</table>

Showing 1 to 8 of 8 entries (filtered from 25 total entries)
New Result Pages: Explore and Analyze

Functional / pathway analysis

Gene Ontology Enrichment

Pathway Enrichment
Genome Browser Tracks: GWAS + ENCODE + FANTOM5
October Release

- Currently contains the following data
 - **Genes** and pathway annotations
 - **SNP** information (dbSNP v142) with population allele frequency and SNPEff impact predictions
 - Published **AD GWAS** summary statistics
 - NHGRI GWAS Catalog
 - **Functional genomics** data relevant to brain
 - ENCODE: DNasel HS / Histone modification / TF Binding ChIP-Seq
 - FANTOM5: Enhancer-TSS associations / Cell-expressed enhancers

- Planned data
 - Gene-gene interactions
 - Gene expression tissue specificity
 - Cross-species conservation (PhastCons)
 - Genome interaction database
 - Structural variant calls (dbVar/DGV/CNVD)
 - GTex express QTL
Take-home message
-- please share with your ADC

- New datasets at NIAGADS

- **ADSP genotypes** for WGS (available now) and WES (October ~ November)

- **Linking ADSP WES samples** with ADC’s own phenotype data – contact NIAGADS so we can help you

- Improved **NIAGADS Genomics Database** will be available in October

lswang@upenn.edu
data@niagads.org
Acknowledgements

Many thanks to
• Patients and families
• NIA ADRC program and centers
• NACC and NCRAD
• ADSP
• IGAP/ADGC/CHARGE/EADI/GERAD
• Support from NIA/NHGRI/NIH

NIAGADS Team:
• Gerard Schellenberg
• Chris Stoeckert
• Emily Greenfest-Allen
• John Iodice
• Adam Naj
• Steve Arnold
• Amanda Partch
• Otto Valladares
• John Malamon
• D. Micah Childress
• Rebecca Cweibel
• Prabhakaran K.
• Han Jen Lin

EAB:
• Matthew Farrer
• Barry Greenberg
• Eddie Koo
• Carole Ober
• Eric Schadt

DUC:
• Tatiana Foroud (Chair)
• Steve Estus
• Mel Feany
• Todd Golde
• Leonard Petrucelli

NIA Program Officer:
• Marilyn Miller

NIAGADS is funded by NIA U24-AG041689