CLINICAL TRIALS: OVERVIEW, CURRENT TRIALS AND PIPELINE

Paul S. Aisen, MD
Department of Neurosciences
University of California, San Diego
Brief History of AD Therapeutics

- 1906: Dr. Alois Alzheimer describes AD
- 1906-1970’s: General assumption that this is an untreatable degenerative disease
- Late 1970’s Cholinergic hypothesis suggests treatment possibilities
- 1985: First positive treatment study
- 1993: Tacrine is approved; 3 other similar drugs follow
- 2003: Memantine is approved, representing a second therapeutic class for AD
AD Therapeutics

Therapeutic target development

- Cholinergic hypothesis
- NMDA antagonism
- Oxidative stress
- Inflammation
- Amyloid hypothesis
- Tau, kinase inhibition
- Neurotrophins
- Mitochondrial stabilization

Trial methodology

- Access to subjects
- Operationalized diagnosis/subject selection
- Outcome measures
- Biomarkers
- Analytic methods
- Regulatory guidance
Standard therapy of AD in 2009

- Cholinesterase inhibitor
- Add memantine at moderate stage (MMSE ≤ 14)

No established treatment for MCI (vitamin E ineffective, cholinesterase inhibitors minimally effective, possibly risky)
AD Therapeutics: Current Outlook

- 1999-present: growing consensus that specific molecular cause of AD may be \( \text{A} \beta \) (amyloid beta peptide)
- Optimism that disease-modifying, possibly disease-halting treatment can be developed, targeting \( \text{A} \beta \)
- Other targets: tau and tangles, mitochondrial function, transport, cell survival, vascular factors …
Hallmarks of AD

- Amyloid plaque (Aβ)
  - Clumps of toxic material in the brain tissue
Hallmarks of AD

- Neurofibrillary tangles: hyperphosphorylated tau
- Deposits within the cells of the brain
Pivotal pathway in AD pathophysiology

APP → β-secretase → Aβ → Neuron death

γ-secretase

Inflammation, oxidative stress, excitotoxicity, direct toxicity
Genetic causes of AD

- Down syndrome (trisomy 21)
- APP mutations
  - β-secretase
  - γ-secretase
- PS1, PS2 mutations
- Inflammation
- Oxidative stress
- Excitotoxicity
- Direct toxicity
- Neuron death
Disease-Modifying Strategies

APP → β-secretase → Aβ → Neuron death

- secretase modulators
- immunotherapy
- amyloid binders
- anti-inflammatories
- antioxidants
- neuroprotectants
- inflammation
- oxidative stress
- excitotoxicity
- direct toxicity

γ-secretase
Disease-Modifying Strategies

APP → β-secretase → Aβ → Neuron death

immunotherapy
amyloid binders
anti-inflammatories
antioxidants
neuroprotectants

secretase modulators
γ-secretase

inflammation
oxidative stress
excitotoxicity
direct toxicity
Secretase Modulators

- **β-secretase inhibitors**
  - #1 strategy; enzyme structure known; knock-out mice viable
  - disappointingly slow to develop drug
  - candidates emerging (in vitro and in vivo activity); two have entered clinical trials

- **γ-secretase inhibitor**
  - toxicity related to other substrates (eg, Notch)
  - treatment with non-specific inhibitors may nonetheless be feasible (eg, Lilly)
  - inhibitors/modulators specific to APP emerging

- **NSAID γ-secretase modulators** (eg tarenflurbil)
- **GSK-3β inhibitors** (eg, lithium)
- **α-secretase activators** (eg, PKC activators: bryostatin)
Reductions in CSF Aβ

<table>
<thead>
<tr>
<th>Aβ1-40</th>
<th>Aβ1-42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>100mg</td>
</tr>
<tr>
<td>-6%</td>
<td>-11%</td>
</tr>
<tr>
<td>-8%</td>
<td></td>
</tr>
<tr>
<td>-20%</td>
<td></td>
</tr>
</tbody>
</table>

p=0.146; p=0.068 adjusted for baseline MMSE

tarenflurbil (Flurizan)

- Enantiomer of NSAID, free of COX inhibition
- Like certain NSAIDs (ibuprofen, sulindac), R-flurbiprofen modulates $\gamma$-secretase activity, reducing A$\beta$ production in vitro and in vivo
- In absence of COX activity, high doses can be administered
Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: a randomised phase II trial

Gordon K Wilcock*, Sandra E Black*, Suzanne B Hendrix, Kenton H Zavitz, Edward A Swabb, Mark A Laughlin, on behalf of the Tarenflurbil Phase II Study investigators†

Summary

Background The amyloid-β peptide Aβ42 has been implicated in the pathogenesis of Alzheimer’s disease (AD). We aimed to test the effects of tarenflurbil, a selective Aβ42-lowering agent (SALA), on cognition and function in patients with mild to moderate AD.

Methods 210 patients living in the community who had a mini-mental state examination (MMSE) score of 15–26 were randomly assigned to receive tarenflurbil twice per day (400 mg [n=69] or 800 mg [n=70]) or placebo (n=71) for 12 months in a phase II, multicentre, double-blind study. Primary efficacy outcomes were the AD assessment scale cognitive subscale (ADAS-cog), the Alzheimer’s Disease Cooperative Study activities of daily living scale (ADCS-ADL), and the clinical dementia rating sum of boxes (CDR-sb). In a 12-month extended treatment phase, patients who had received tarenflurbil continued to receive the same dose, and patients who had received placebo were randomly assigned to tarenflurbil at 800 mg or 400 mg twice per day. Primary efficacy analyses were done by intention to treat. This trial is registered with Health Canada (084527) and the Medicines and Healthcare products Regulatory Agency in the UK (20365/0001/A 69316).

Findings A prespecified interaction analysis revealed that patients with mild AD (baseline MMSE 20–26) and moderate AD (baseline MMSE 15–19) responded differently to tarenflurbil in the ADAS-cog and the ADCS-ADL (p=0.01); therefore, these groups were analysed separately. Patients with mild AD in the 800 mg tarenflurbil group had lower rates of decline than did those in the placebo group in activities of daily living (ADCS-ADL difference in slope 3.98 [95% CI 0.33 to 7.62] points per year, effect size [reduction from placebo decline rate] 46.4%, Cohen’s d 0.45; p=0.033) and global function (CDR-sb difference −0.80 [−1.57 to −0.03] points per year, effect size 35.7%, Cohen’s d 0.42; p=0.042); slowing of cognitive decline did not differ significantly (ADAS-cog difference −1.36 [−4.07 to 1.36] points per year, effect size 33.7%, Cohen’s d 0.20; p=0.327). In patients with moderate AD, 800 mg tarenflurbil twice per day had no significant effects on ADCS-ADL and ADAS-cog and had a negative effect on CDR-sb (−52%, Cohen’s d −1.08; p=0.003). The most common adverse events were diarrhoea (in seven, nine, and five patients in the 800 mg, 400 mg, and placebo groups, respectively), nausea (in seven, seven, and four patients), and dizziness (in five, nine, and four patients). Patients with mild AD who were in the 800 mg tarenflurbil group for 24 months had lower rates of decline for all three primary outcomes than did patients who were in the placebo group for months 0–12 and a tarenflurbil group for months 12–24 (all p<0.001), and had better outcomes than did patients who were in the placebo group for months 0–12 and the 800 mg tarenflurbil group for months 12–24 (all p<0.05).

Interpretation 800 mg tarenflurbil twice per day was well tolerated for up to 24 months of treatment, with evidence of a dose-related effect on measures of daily activities and global function in patients with mild AD.
Tarenflurbil Phase III

- 1700 mild AD subjects, 18 months

- Absolutely negative
Secretase inhibitors: pipeline

- Selective gamma secretase inhibitors: greater efficacy with safety
- Beta secretase inhibitors: entering phase II
Disease-Modifying Strategies

APP → β-secretase → Aβ → Neuron death

- secretase modulators
- γ-secretase
- immunotherapy amyloid binders
- anti-inflammatories antioxidants neuroprotectants
- inflammation oxidative stress excitotoxicity direct toxicity
Amyloid-binding agents

- Active vaccine
- Passive immunotherapy (Elan-Wyeth III)
- IGIV
- Non-immunologic agents
  - CNS-penetrating anti-aggregation agents (eg, GAG-mimetic tramiprosate)
  - ELND005 (AZD-103, scyllo-cyclohexanehexol) now in Phase II
Active immunotherapy

- Remarkable results in APP transgenic mice
- Vaccine (AN1792) Phase II
  - Halted early because of encephalitis in 6%
  - Trend toward cognitive benefit in antibody responders
  - Surprisingly, antibody responders show increased atrophy rate by MRI
  - Autopsies show striking plaque clearance in most subjects
- Vaccine results provide support to concept of immunotherapy
Immunotherapy Targeting β-Amyloid Alters Alzheimer Neuropathology

ACTIVE VACCINATION


PASSIVE IMMUNIZATION


Slide prepared by Norm Relkin
Active immunotherapy

- New active vaccines in Phase I, II testing
  - Short peptide fragment, e.g., Aβ amino acids 1-7 or 1-4, can induce a humoral immune response without a cellular immune response (Elan-Wyeth, Merck, Novartis)
  - Plaque clearance without risk of encephalitis?
Passive immunotherapy

- Humanized monoclonal anti-amyloid antibodies under development by a number of companies
- Expected to reduce brain amyloid (shown in transgenic mice) without risk of encephalitis (no T cell immune response)
- Concerns: focal edema, microhemorrhages
- Issues: sequestration v. phagocytosis, N-terminus v. mid-sequence, oligomers?, deglycosylation, natural (IgIV) v. monoclonal
- Elan/Wyeth, Lilly, Roche, Pfizer, Genentech …
Phase II study of Gammagard IVIG for Alzheimer’s Disease

The initial 6 month double blind, placebo-controlled phase was completed in July 2007. An 18 month extension study in progress.

• Analysis of the 6 month results:
  ▪ Gammagard IVIg-treated AD patients had superior outcomes on tests of cognition, behavior and global assessment of change.
  ▪ PET results indicate improvements in brain metabolism in the IVIg-treated group versus decline in placebo.
  ▪ Results exceeded pre-set criteria for proceeding with a pivotal Phase III study.

An 18 month Phase III trial (ADCS, Baxter) has started
Immunotherapy pipeline

- Active amyloid vaccines: ACC-001, CAD106, Merck
- Passive approaches: bapineuzumab, solaneuzumab, Pfizer c-terminus, Genentech conformational antibodies
- And also: DNA amyloid vaccines, tau vaccines
Anti-aggregation rx: tramiprosate

- Phase II: reduction in CSF Abeta
- Phase III: negative
- Now marketed as a nutriceutical!
Other amyloid reduction strategies

- DHA (ADCS, Martek)
- RAGE inhibitor (ADCS, TTP, Pfizer)
Other amyloid-reducing strategies: DHA

- long chain omega-3 fatty acid
- major component of neuronal membrane phospholipids
- reduced in AD
- DHA supplementation reduces amyloid accumulation in Tg2576 mice

ADCS trial nearly done, results at ICAD
Other amyloid-reducing strategies: RAGE inhibitors

- RAGE = receptor for advanced glycation end-products
- Involved in Aβ transport and toxicity
- RAGE inhibitors reduce amyloid accumulation and improve cognition in transgenic mice
- A RAGE inhibitor is now in Phase II trial for diabetes

A Phase II trial of a RAGE inhibitor in AD is now under way (ADCS, Pfizer)
Disease-Modifying Strategies

APP $\rightarrow$ β-secretase $\rightarrow$ γ-secretase $\rightarrow$ Aβ $\rightarrow$ Neuron death

secretase modulators
immunotherapy amyloid binders
anti-inflammatories
neuroprotectants

inflammation
oxidative stress
excitotoxicity
direct toxicity
NAP (AL-108) protects the neuronal microtubular network

Control                                   ZnCl₂

Microtubule toxicity        Microtubule toxicity + AL-108

Microtubule decoration with anti-NAP antibodies

### Phosphorylated Tau Level (% of vehicle group)

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>NAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. AT8 (Ser(^{202})/Thr(^{205}))</td>
<td>NAP reduced pTau level</td>
<td>***</td>
</tr>
<tr>
<td>B. AT180 (Ser(^{231}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. AT270 (Ser(^{181}))</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>D. CP13 (Ser(^{202}))</td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

**Legend:**
- Vehicle: Control group without treatment.
- NAP: Treatment group with NAP.
- ***: Statistical significance indicated by asterisks.
NAP: current status

- Phase I, II studies conducted by Allon Therapeutics (very encouraging)
- IV NAP under development for post-CABG cognitive impairment
- NIMH-funded study of intranasal NAP for cognitive impairment in schizophrenia
- FTLD study at UCSF
- AD: Allon seeking partner
NGF Gene Delivery for AD

- Mark Tuszyński, UCSD: encouraging work in primates
- Phase I: UCSD (ex vivo, in vivo), Rush (in vivo), sponsored by Ceregene
- Phase II: NIA has funded a randomized, sham-surgery controlled, multicenter trial of NGF gene delivery in AD; start-up under way
Other neuroprotection studies, pipeline

- Lithium, valproic acid
- Other GSK-3 inhibitors
- Anti-inflammatory drugs
- Resveratrol (ADCS trial next year)
12 month Dimebon trial

Doody et al, Lancet, 2008
AD Trial Design Issues
FDA Guidelines for AD Trials

- Co-Primary outcome measures
- Memory/cognition test, plus global or functional measure

- ADAS-cog has worked well for cognitive enhancers in mild-moderate AD
- CIBIC-plus (CGIC) has worked well as a global
- CDR-SB, ADCS-ADL, DAD reasonable co-primaries for long trials
ADAScog change, CIBIC+ for assessment of cognitive enhancement

12 Week Phase II Donepezil Trial

Rogers et al, Arch Neurol, 1998
Cognitive Decline in AD Treatment Trials
Disease-Modifying Drug Development: Phase II problem

- No short-term benefit expected, rather change in slope of decline
- Placebo groups in mild AD studies don’t decline in 6 months; placebo decline minimal in 12 months
- To see effect on slope, need hundreds or thousands of subjects followed for at least 18 months
- Cannot see proof of efficacy in Phase II-type trial (in contrast to currently approved drugs)
Phase II

- Aim for hints of clinical efficacy (tarenflurbil, bapineuzumab)
- Focus on biomarkers (tramiprosate, IgIV, semagacestat and Lilly monoclonal antibody)
- Or both
- Or neither: skip Phase II
Has the Amyloid Hypothesis Been Damaged?

- Tramiprosate
- Flurizan
- Holmes et al (Lancet paper on end-stage dementia despite amyloid plaque removal)

- Not really?
We must recognize that in the absence of an efficacy signal in Phase II, a Phase III trial of a disease-modifying treatment is high risk (10-20% chance of success?)

Nonetheless, the potential gains may justify this risk
Moving forward

- Biomarkers
- Improvements to measures
- Recruitment and training of sites, PIs, coordinators, raters
- Recruitment/retention of participants

- Aiming for earlier intervention in the neurobiological cascade
Biochemical markers
<table>
<thead>
<tr>
<th></th>
<th>AD (n=100)</th>
<th>CONTROL (n=114)</th>
<th>MCI (n=196)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>95% CI</td>
<td>Median</td>
</tr>
<tr>
<td>Tau</td>
<td>121.6±57.6</td>
<td>110.2 - 133.0</td>
<td>110.5</td>
</tr>
<tr>
<td>Aβ_1-42</td>
<td>143.5±41.0</td>
<td>135.4 - 151.6</td>
<td>137.5</td>
</tr>
<tr>
<td>P-Tau_181P</td>
<td>41.7±20.0</td>
<td>37.7 - 45.7</td>
<td>36.0</td>
</tr>
<tr>
<td>Tau/Aβ_1-42</td>
<td>0.92±0.48</td>
<td>0.82 - 1.0</td>
<td>0.86</td>
</tr>
<tr>
<td>P-Tau_181P/Aβ_1-42</td>
<td>0.32±0.19</td>
<td>0.28 - 0.36</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Figure 2: Kaplan-Meier estimates of the rate of progression to Alzheimer’s disease in patients with MCI who have either normal CSF or pathological CSF at baseline

Numbers at risk are the number of patients with MCI at each time point who had not developed any type of dementia and for whom clinical follow-up was still ongoing. Cut-off values for pathological CSF were >350 ng/L for T-tau and <530 ng/L for Aβ42. The incidence of Alzheimer’s disease in patients with MCI who had pathological CSF (n=67) was 27% per year compared with 1% per year in patients with normal CSF (n=67).
Neuroimaging markers
Serial coronal MRI of an individual with initially mild AD
PET Scan of Normal Brain

PET Scan of Alzheimer’s Disease Brain
Typical Imaging Results with $^{18}\text{F}-\text{AV-45}$

- Alzheimer’s Patients
- Healthy Elderly Controls

One “AD” with control-like amyloid levels had symptoms suggestive of Parkinson’s

Some healthy controls had AD-like levels of amyloid
Future: A Surrogate Marker

- Pathology begins years/decades before dementia
- Disease-modifying treatment likely most effective early
- Impossible to use clinical outcomes in an early prevention trial (too long to wait)
Possible surrogates

- CSF Abeta42 (or tau, p-tau)
- Amyloid neuroimaging
- Brain volume loss
- Neuropsych measures
What we need to do to establish an AD surrogate marker

- Strengthen link in mild AD
  - Continue to build evidence linking potential surrogate to AD diagnosis and progression
  - Show that in mild AD or MCI, with more than one agent, drug impact on clinical measures is associated with drug impact on potential surrogate
  - Establish link between potential surrogate in asymptomatic individuals and later clinical disease

- Strategize with regulators
Summary of trial design issues

- Disease-modifying therapy likely to be modestly beneficial in mild AD
- We are reaching consensus on development/regulatory pathways targeting milder disease (even asymptomatic)
- Ultimately, we will screen/diagnosis AD neurobiology using biomarkers (eg amyloid imaging)
- Very early treatment will maximize benefits
AD diagnosis marching leftward

Onset of AD path

Surrogate AD:
No symptoms, biomarker evidence of amyloid dysreg.

Modified Dubois Criteria:
Very mild symptoms + amyloid biomarker

Dubois Research Criteria:
MCI + any biomarker

Standard dx
Early AD Trial Issues

- Diagnosis
  - Extending diagnosis to pre-dementia stages

- Outcomes
  - Traditional outcomes will work in pre-dementia stage
  - Surrogates needed for asymptomatic stage

- Trial design: selection, duration, stratification, covariates

- Analysis plan
<table>
<thead>
<tr>
<th></th>
<th>Mild AD Trial</th>
<th>Early AD Trial</th>
<th>Very Early AD Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Status</td>
<td>Mild dementia</td>
<td>Mild cognitive impairment</td>
<td>Cognitively normal</td>
</tr>
<tr>
<td>Clinical Dementia Rating</td>
<td>0.5-1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>global score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMSE range</td>
<td>16-26</td>
<td>25-30</td>
<td>28-30</td>
</tr>
<tr>
<td>Biomarker for subject</td>
<td>none</td>
<td>Amyloid imaging and/or CSF abeta42</td>
<td>Amyloid imaging and/or CSF abeta42</td>
</tr>
<tr>
<td>selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomarker for subject</td>
<td>None or APOE genotype</td>
<td>APOE genotype</td>
<td>APOE genotype</td>
</tr>
<tr>
<td>stratification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary cognitive</td>
<td>ADAScog11</td>
<td>ADAScog12 (includes delayed recall)</td>
<td>Sensitive memory and/or exec. function measure</td>
</tr>
<tr>
<td>outcome measure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary global/functional</td>
<td>CDR-SB</td>
<td>CDR-SB</td>
<td>none</td>
</tr>
<tr>
<td>outcome measure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis covariates</td>
<td>Baseline cognition and regional brain</td>
<td>Baseline cognition and regional brain</td>
<td>Regional brain volume</td>
</tr>
<tr>
<td>volume</td>
<td></td>
<td>volume</td>
<td></td>
</tr>
<tr>
<td>Biomarker outcome</td>
<td>Regional brain atrophy</td>
<td>Regional brain atrophy</td>
<td>Regional brain atrophy and/or amyloid measure (as surrogate endpoint)</td>
</tr>
<tr>
<td>Duration of treatment</td>
<td>18 months</td>
<td>24 months</td>
<td>24-36 months</td>
</tr>
<tr>
<td>Primary analysis</td>
<td>Change score or slope of co-primaries:</td>
<td>Change score or slope of co-primaries:</td>
<td>Regional brain atrophy rate and cognitive decline</td>
</tr>
<tr>
<td></td>
<td>ADAScog11, CDR-SB</td>
<td>ADAScog12, CDR-SB</td>
<td></td>
</tr>
</tbody>
</table>
NIA: ADCS, ADNI, ADCs etc.

Alzheimer’s Association

From the ADCS/UCSD: Ron Thomas, Anthony Gamst, Mike Donohue, Mike Weiner, Steve Edland, Jim Brewer, many others

From ADNI: Mike Weiner, Ron Petersen, Laurel Beckett, many others

Many, many colleagues, individuals with (or at risk for) AD and their families