Biomarkers of the Alzheimer's pathological cascade and clinical expression: role of MRI

Clifford R. Jack, Jr.,
Dept Radiology
Mayo Clinic
Rochester MN
Objectives

- to describe, and provide evidence in support, of a dynamic biomarker based model of AD progression
- To place the role of MRI within this context
Outline

- Temporal ordering and dynamic nature of AD biomarkers ➔ graphical models
- Role of MRI
Parallels: Imaging & CSF Biomarkers; 4 classes

- **Brain Amyloidosis**
 - PET - amyloid plaque imaging
 - CSF AB 1-42

- **Neuronal dysfunction and tau mediated injury**
 - CSF t-tau and p-tau
 - FDG PET
 - Functional MRI (activation and resting state)

- **Neurodegeneration**
 - Structural MRI
 - MR Spectroscopy
 - Diffusion MRI
 - Perfusion MRI

- **Inflammation** - PET

Biomarker Reviews
- Hampel, Alzheimer’s Dement 2008
- Shaw, Nat Rev Drug Discov 2007
Model of disease staging based on PIB & MRI

Publications in 2008 and early 2009

- 11C PIB and Structural MRI Provide Complementary Information in Imaging of AD and Amnestic MCI. *Brain* 2008;131(Pt 3):665-680
- Serial PIB and MRI in normal, MCI, and AD: implications for sequence of pathological events in AD. *Brain* 2009 132(Pt 5):1355-65

- Objective: understand temporal relationships amyloid, neurodegeneration, cognition
- 11C PIB ➔ biomarker of amyloid load
- structural MRI ➔ biomarker of stage of neurodegeneration
Cross sectional group-wise comparison of global cortical PiB and hippocampal volume.

<table>
<thead>
<tr>
<th>Global cortical PiB (P < 0.0016)</th>
<th>Hippocampal W score (P < 0.001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P < 0.0016)</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing comparison of global cortical PiB and hippocampal volume.](image)
Cross sectional group-wise comparison global cortical PiB and hippocampal volume

<table>
<thead>
<tr>
<th>Global cortical PiB</th>
<th>Hippocampal W score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P = 0.0016)</td>
<td>(P < 0.001)</td>
</tr>
</tbody>
</table>

Brain 2008;131:665-680
Annual change in global PIB ratio and ventricular volume by clinical diagnosis

Mayo plus ADNI data

Brain 2009 132 (Pt 5):1355-65
Summary: Data derived from imaging consistent with model of typical late onset AD with 3 main features

- Significant plaque deposition occurs prior to neurodegeneration and clinical decline
- **Dissociation:** Change in cognition is closely coupled to rate of neurodegenerative progression, not to rate of amyloid deposition
- **Bi-phasic disease process:** Amyloid dynamic early vs. neurodegeneration dynamic mid to late stage

Brain 2008;131(Pt 3):665-680, and *Brain 2009 132(Pt 5):1355-65*
Proposed model relating imaging (pathology) and clinical presentation over an individual’s adult lifetime.
Proposed model relating imaging (pathology) and clinical presentation over an individual’s adult lifetime.
Parallels: Imaging & CSF Biomarkers; 4 classes

- **Brain Amyloidosis**
 - PET - amyloid plaque imaging
 - CSF AB 1-42

- **Neuronal dysfunction and tau mediated injury**
 - CSF t-tau and p-tau
 - FDG PET
 - Functional MRI (activation and resting state)

- **Neurodegeneration**
 - Structural MRI
 - MR Spectroscopy
 - Diffusion MRI
 - Perfusion MRI

- **Inflammation - PET**

Biomarker Reviews
- Hampel, Alzheimer’s Dement 2008
- Shaw, Nat Rev Drug Discov 2007
Evidence of temporal ordering of biomarkers

- **Amyloid imaging** [Mintun, 2006; Aizenstein, 2008; Klunk 2004; Rowe 2007; Mormino 2009]
- **CSF Aβ42** [Peskind, 2006; Shaw, 2009; Fagan, 2007; Li, 2007; Fagan 2009; Vemuri 2009]
- **CSF tau** [Bouwman 2007; de Leon 2006; Wahlund 2003; Stefani 2006; Sluimer 2008; Hansson 2006; Sunderland 1999; Blennow 2003; Vemuri 2009]
- **FDG PET** [Minoshima, 1997; Chetelat, 2002; de Leon, 2001; Reiman, 1996; Small 1995]
- **MRI** [Fox 1997; Fox 1999; Kaye, 1997; Killiany 2000; Dickerson 2009]

Conclusions

- Biomarker abnormalities precede clinical symptoms
- Amyloid biomarkers become abnormal first
- Little evidence for ordering of amyloid imaging vs CSF Aβ42
- FGD PET changes before MRI [Reiman 1998]
- Little evidence for ordering of FDG PET vs CSF tau
- MRI last onset but correlates with clinical Sx longest [Vemuri, 2009]
- Non-linear functions (over long period) [Chan 2003; Carlson 2008]
Dynamic Biomarkers of the Alzheimer’s Pathological Cascade

Lancet Neurol 2010; 9: 119-28
Ab Amyloid = CSF Ab42 or amyloid PET imaging; Tau Mediated Neuron Injury and Dysfunction = CSF tau or FDG PET; Brain Structure = structural MRI
Sequence = Biomarker Dynamics Changes with Time
Simultaneously active, not start – stop, start-stop

Lancet Neurol 2010; 9: 119-28
Outline

- Temporal ordering and dynamic nature of AD biomarkers ➔ graphical model

- Role of MRI
 - How is it useful?
 - Provide evidence for useful applications
How is structural MRI not useful?

- **Not an indicator of an AD-specific pathology or molecular pathway** – AB amyloid biomarkers
- **Not the earliest biomarker of disease** – AB amyloid
- **Not the earliest biomarker of neuronal pathology/injury** – FDG PET or CSF tau
Effect of APOE 4 on biomarkers

- AB chaperone

Vemuri et al, Annals of Neurology, April 2010
How is structural MRI useful?

- Measure of downstream pathological event – not necessarily bad
- Measure of pathologic process that is closely linked with cognitive impairment – i.e. neurodegeneration
- Clinical usefulness hinges on MRI being accurate measure of stage of neurodegenerative pathology
 - cross sectional ➔ stage
 - longitudinal ➔ change in stage
Antemortem MRI based Structural Abnormality Index (STAND)-Scores Correlate with Postmortem Braak Neurofibrilllary Tangle Stage

Vemuri, NeuroImage 2008
Role of MRI – clinical utility

- Biomarker evidence in support of a diagnosis of AD
- Predict future cognitive course = early diagnosis
 - In MCI
 - in pre symptomatic subjects
- Measure disease progression
Aid in clinical diagnosis

- 2 ways this can be operationalized
STAND algorithm for Individual Diagnosis

Main Component of the STAND-Algorithm
Large library of (AD and CN) MRI scans from which regions differentiating AD from CN are detected and used to score new incoming cases.

Vemuri et al
NeuroImage 2008; 39: 1186-1197
“Automated” AD Diagnosis*

- Kloppel et al 2008
- Driscoll et al 2009
- Davatzikos et al 2009
- Fennema-Notestine et al 2009
- Vemuri et al 2008
Prediction

- MCI to AD
 - Apostolova, 2006
 - Visser, 1999
 - Devanand, 2007
 - Stoub, 2005
 - Convit, 2000
 - Killiany, 2000
 - Dickerson, 2001
 - Risacher, 2009 #6500

- Pre symptomatic subjects
Baseline adjusted hippocampal volume: relationship to progression from MCI to AD

Stable (\%) - 100, 80, 60, 40, 20, 0

Years - 0, 1, 2, 3, 4, 5, 6

Baseline adjusted hippocampal volume: relationship to progression from MCI to AD

Neurology, 1999;52:1397-1403
CSF AB and decreased brain volume in cognitively normal elderly (CDR 0)
Fagan et al Annals 2009
Cortical Thickness in PIB + vs – control elderly
Dickerson et al Cereb Cortex 2009
Measure of Disease Progression
ADNI: sample size per arm to detect a 25% reduction in rate (0-12 months) of decline in AD

MRI, FDG PET, cognitive tests, in AD, n=30

<table>
<thead>
<tr>
<th>Lab</th>
<th>Modality</th>
<th>Variable</th>
<th>SS/arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cog.</td>
<td>MMSE</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>Cog.</td>
<td>ADAS-Cog</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td>Foster</td>
<td>PET</td>
<td>Hypometab 2</td>
<td>508</td>
</tr>
<tr>
<td>Cog.</td>
<td>CDR SOB</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Jagust</td>
<td>PET</td>
<td>ROI-avg</td>
<td>396</td>
</tr>
<tr>
<td>Schuff- FS</td>
<td>MRI</td>
<td>Ventricles</td>
<td>95</td>
</tr>
<tr>
<td>Reiman</td>
<td>PET</td>
<td>CV - fROI</td>
<td>91</td>
</tr>
<tr>
<td>Thompson</td>
<td>MRI</td>
<td>CV % change</td>
<td>53</td>
</tr>
<tr>
<td>Fox</td>
<td>MRI</td>
<td>BSI% change</td>
<td>50</td>
</tr>
</tbody>
</table>
Summary: Biomarker-based disease staging

- Modeling provides a framework for hypothesis testing that relates temporal changes in AD biomarkers with clinical disease stage and with each other
- Specific details of model will undoubtedly change
- However, certain principles will stand up
 - Biomarkers measure specific aspects of AD path
 - Temporally ordered: amyloid => neuronal path => cognition
 - Temporal ordering: both onset and ceiling
 - Non linear function of time
 - Combination of biomarkers needed for comprehensive staging
Structural MRI: diagnosis, prediction, measure progression

Ab Amyloid = CSF Ab42 or amyloid PET imaging; Tau Mediated Neuron Injury and Dysfunction = CSF tau or FDG PET; Brain Structure = structural MRI

Lancet Neurol 2010; 9: 119-28
Acknowledgments

- AG11378
- AG19142
- AG16574
- AG06786
- ADNI
- Robert H. and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program
- Alexander Family Professorship in Alzheimer's disease research
Mayo Rochester ADRC and Study of Aging

- Ronald C. Petersen*
- David Knopman
- Brad Boeve
- Joe Parisi
- Walter Rocca
- Rosebud Roberts
- Bob Ivnik
- Glenn Smith
- Shane Pankratz
- Yonas Geda
- Selam Negash

Mayo Jacksonville
- Dennis Dickson
- Neil Graff-Radford
- Tannis Ferman
Mayo Aging and Dementia Imaging Research (ADIR) Lab

Clifford R. Jack, Jr. Denise Reyes
Kejal Kantarci Bret Borowskii
Jeff Gunter Greg Preboske
Matthew Senjem Maria Shiung
Prashanthi Vemuri Chad Ward
Jennifer Whitwell Brian Gregg
Mary Machulda Paul Lewis
Matt Bernstein Ramesh Avula
Heidi Edmonson Don Gerhart
Stephen Weigand Dan Heard
Heather Wiste Scott Przybelski
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade

David S. Knopman
William J. Jagust
Leslie M. Shaw
Paul S. Aisen
Michael W. Weiner
Ronald C. Petersen
John Q. Trojanowski