Animal Models of Neuroplasticity: or is it Cognitive Reserve?

Carl W. Cotman
Depts of Neurology and Neurobiology and Behavior,
University of California Irvine
Student Definitions

• “Cognitive reserve is the concept used to describe patients who exhibit AD pathology without the associated cognitive defects.”
• “I will define brain cognitive reserve as functional compensation for AD pathology induced by enhancement of mental and physical activity.”
Overview:

• Impact of an enriched environment on building reserve in a higher animal model
• Role of BDNF in reserve – enables learning and recall
• Molecular reserve in MCI – reserve in action?
The aged canine as a model of human brain aging

• Canines develop learning and memory deficits beginning in middle age.

• Like humans, with age, canines:
 – show increased individual variability in cognition.
 – naturally accumulate beta-amyloid.
 – Accumulate oxidative damage (proteins, lipids) and mitochondrial dysfunction

• Represents an animal model of MCI
Can Behavioral Enrichment/Exercise, and/or Diet, reduce the Development of Age-Dependent Cognitive Dysfunction in Canines?
Longitudinal Study

<table>
<thead>
<tr>
<th></th>
<th>Aox Diet (-)</th>
<th>Aox Diet (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Enrichment (-)</td>
<td>N=12 Old</td>
<td>N=12 Old</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral Enrichment (+)</td>
<td>N=12 Old</td>
<td>N=12 Old</td>
</tr>
<tr>
<td></td>
<td>N=8 Young</td>
<td>N=9 Young</td>
</tr>
</tbody>
</table>

Old beagles – 8 to 12 years at start
Young beagles – 2 to 5 years at start
Treatment duration – 2.8 years
Canine Antioxidant Diet

Antioxidants
- dl-alpha tocopherol acetate-1050 ppm (20 mg/kg - 800 IU/day)
- Stay-C (ascorbyl monophosphate)-100 ppm or ~100 mg/day
- Spinach, carrot granules, tomato pomace, citrus pulp, grape pomace: 1% each in exchange for corn (Increased ORAC by 50%, equivalent to 4-5 servings of fruits and vegetables/day)

Mitochondrial cofactors
- dl-Lipoic acid: 135 ppm (2.7 mg/kg)
- l-carnitine: 300 ppm (6 mg/kg)
Enrichment Protocol

- Play toys
- Kennelmate
- 3-4 weekly walks
- Additional cognitive experience/education

Controls
Discrimination learning: shape, color, size
Discrimination Learning is impaired with age

- 10 trials/day
- 40 training sessions
- **Criteria**: 70% of trials correct, 3 successive test sessions

![Bar chart showing errors to criterion for Black/White discrimination between young and old subjects.](chart)
Combined intervention (EE+AOX) prevents cognitive decline with age

EE = behavioral enrichment
AOX = antioxidant diet

Reversal performance:

% of animals failing to reach criteria

Year 1 Year 2 Year 3

Control AOX EE AOX + EE

Task: Object Size B/W discrim
Can the interventions “reverse” age-related cognitive dysfunction?
Spatial Memory improved by EE+AOX

P<.05

Year of Study

Errros to Criterion

Year 1 Year 2 Year 3

Control EE AOX EE+AOX

Year of Study
Synapse Markers are increased in the combined treatment group (SNAP25)
Mitochondrial ROS production as a function of age and EE+AOX treatment

Head, Cotman, Sullivan, 2009
Enrichment+AOX reduces age-related oxidative damage: SOD, superoxide to water; GST, detoxifies HNE

(Oppi, Cotman, et al., 2008)
The Interventions reduce age-related Caspase-3 activation

Control (C/C), antioxidant (C/A), enrichment (C/E) combination (E/A)

Immunofluorescent staining for cleaved caspase-3 and cleaved product (fractin) in the canine frontal cortex.
Combined EE+AOX increases BDNF mRNA, and counteracts BDNF decline with age

(Fahnestock, Cotman, et al., 2010)
How do the treatments affect Beta-amyloid?

• Levels decreased?
• Or maybe increased tolerance?
Combined EE+AOX decreases beta-amyloid plaque load.
Change in Amyloid load does not correlate with behavioral improvement

<table>
<thead>
<tr>
<th></th>
<th>Pearson correlation</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Memory Performance</td>
<td>0.198</td>
<td>n.s</td>
</tr>
<tr>
<td>Black/white discrimination errors</td>
<td>-0.096</td>
<td>n.s</td>
</tr>
<tr>
<td>Black/white reversal errors</td>
<td>-0.134</td>
<td>n.s</td>
</tr>
</tbody>
</table>
Enrichment, Aox treatment: minimally reduce AB42
Hypothesis for synergistic effectiveness of the combined EE + AOX treatment

• **AOX intervention** improves mitochondrial function:
 – may “**enable**” enrichment stimuli to better engage plasticity and protective mechanisms

• **Combined EE+AOX** results in greater learning improvements, pathology reduction, and BDNF induction than either EE or AOX alone

• **Brain tolerates β-amyloid**
Role of BDNF/Exercise on Enabling Cognitive Performance

• Can BDNF/exercise enable learning of normally sub-threshold events?
 – Test with Object Location Memory Task, an example of hippocampal-dependent “incidental” learning

• How critical is exercise-induction of BDNF in hippocampus for enabling learning?
Exercise mice 3 wks, expose to sub-threshold training for object location memory and determine if mice now learn and retain experience 24hrs.

Sub-threshold training (3 min): animal cannot discriminate between familiar and novel object location.

24h Retention Test Performance

(Stefanko et al. 2009)
Exercise enables sub-threshold learning. The effect is equivalent to Sodium Butyrate (NaB) – a histone deacetylase inhibitor.

Sub-threshold OLM performance (long term memory)
BDNF is required for Exercise to enable sub-threshold learning

Blocking exercise induction of BDNF with siRNA prevents discrimination of the novel location
Does MCI engage Molecular Reserve?

- Is MCI mild AD?
- Are compensatory molecular mechanisms engaged in the MCI brain?
- Evaluate with microarray analyses
Microarray study: MCI, AD, normal aged

• Well powered microarray study (63 cases, see below)
• 4 brain regions
 – EC, HC, Superior Frontal Gyrus (SFG)
 – Somatosensory gyrus (PCG) – “control region”
• Affymetrix (HgU133 plus 2.0 chips)

<table>
<thead>
<tr>
<th></th>
<th>cases</th>
<th>age (yrs)</th>
<th>brain regions</th>
<th># arrays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged Control</td>
<td>24</td>
<td>85 ± 6.8</td>
<td>EC, HC, SFG, PCG</td>
<td>57</td>
</tr>
<tr>
<td>MCI</td>
<td>12</td>
<td>87 ± 4.4</td>
<td>EC, HC, SFG, PCG</td>
<td>40</td>
</tr>
<tr>
<td>AD</td>
<td>27</td>
<td>85 ± 6.2</td>
<td>EC, HC, SFG, PCG</td>
<td>78</td>
</tr>
</tbody>
</table>
MCI cases cluster closely

Entorhinal Cx Hippocampus

Prefrontal Cx Somatosensory Cx

Black: MCI
Red: AD
Green: Aged Control
Electron transport genes: extensive upregulation across brain in MCI

<table>
<thead>
<tr>
<th></th>
<th>EC</th>
<th></th>
<th>HC</th>
<th></th>
<th>PCG</th>
<th></th>
<th>SFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLEX:</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>AGING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCI vs Aged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD vs Aged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red = downregulated
Green = upregulated
Energy and synaptic genes:
Downregulated in AD, but Upregulated in MCI

[Bar charts showing comparisons between MCI vs aged Con, AD vs aged Con, and MCI vs AD for energy and synaptic genes.]
MCI brain mobilizes mechanisms to increase anabolic + metabolic function

• Upregulation of Protein biosynthesis/trafficking/turnover
• Synaptic genes mobilized
 – Neurotransmitter release machinery (SNAREs)
 – Neurotransmitter receptors (Glu, GABA, Ach)
 – Synaptic structure and stabilization genes
• Upregulation of Mitochondrial energy generation
• Molecular mobilization in MCI brain, likely serving to support cognitive reserve (ultimately fails with decline to AD)
Summary

- Brain mobilizes many diverse mechanisms to maintain function in the wake of age and pathology build up.
- Environmental enrichment, exercise, and cognitive training enhance molecular counteractive strategies.
- Even in MCI the molecular machinery is engaged to counteract decline.
- Cognitive reserve may be integrated brain plasticity.
Acknowledgements

Nicole Berchtold, Ph.D.
Liz Head, Ph.D.
Bill Milgram, Ph.D.
Viorela Pop, Ph.D.
Michael Valenzula, Ph.D.
Joyce Siete, Ph.D.
Dan Gillen, Ph.D.
Karlie Intlekofer, Ph.D.
Marcel Wood, Ph.D.
Patrick Sullivan, Ph.D.
Alan Butterfield, Ph.D.
M. Fahnestock, Ph.D.
David Bennett, Ph.D.
Marwan Sabbagh, MD.
Tom Beach, MD.
Christina de Rivera
Frank LaFerla, Ph.D.
and UCI ADRC

Funding provided by NIA
MCI: Gene expression is not intermediate between Aged and AD profiles