Molecular Imaging Heterogeneity of Clinically Defined AD

Gil Rabinovici, M.D.
Edward Fein & Pearl Landrith Endowed Professor
UCSF Memory & Aging Center

2017 Spring ADC Meeting
Boston, MA
April 22, 2017
Disclosures

• **Research support**
 – Avid Radiopharmaceuticals/Eli Lilly, GE Healthcare, Piramal Imaging
 – NIH, American College of Radiology, Alzheimer’s Association, Tau Consortium, Association for Frontotemporal Degeneration, Michael J Fox Foundation

• **Consulting/honoraria**
 – Eisai, Genentech, Lundbeck, Merck, Putnam, Roche
Outline

• Heterogeneity in causes of clinical AD dementia
 • Amyloid-negative MCI/AD
 • Prevalence
 • Demographics, clinical features
 • Biomarker signatures, relationship to SNAP

• Heterogeneity in clinical presentations of AD neuropathology
 • Molecular correlates of non-amnestic AD
 • Early age-of-onset AD (sporadic)
Rates of Aβ Biomarker Negativity in Clinical AD

Bapineuzumab: Mild-Mod AD

Liu et al. Neurology 2015

ADNI: Late MCI and AD

Landau et al. Neurology 2016
Prevalence of Aβ+ in Clinical AD Decreases with Age

Ossenkoppele et al. JAMA 2015
Characterization of Aβ- MCI/AD in ADNI

- **Demographics**
 - Older than Aβ+
 - M > F

- **Cognition and function**
 - Better at baseline (MCI)
 - Slower decline (MCI and AD)

- **Lower prevalence ApoE4**
 - MCI: Aβ- 16% vs. Aβ+ 71%
 - AD: Aβ- 4% vs. Aβ+ 75%

- **Less abnormal neurodegeneration biomarkers**
 - CSF t-tau, p-tau
 - Baseline MRI and FDG
 - Longitudinal MRI

Landau et al. Neurology 2016
Neurodegeneration in Aβ-negative Amnestic AD (N=21)

Chételat et al. Brain 2016
Suspected Non-Alzheimer Disease Pathology (SNAP)

- SNAP in MCI and AD dementia
 - 17%-35% of MCI
 - ~6%-15% of AD dementia
 - Older age-of-onset
 - Male > female
 - ApoE4 rates 11%-32%

- Rate of decline intermediate between A-/N- and A+/N+

- No clinical fingerprint of a single underlying disease
 - Increased WMH in some studies
 - No features of DLB
 - No increases (yet) in tau PET

Intermediate Risk of Cognitive Decline in MCI-SNAP

201 MCI from ADNI/EU
Followed up to 5 yrs (mean 2.5)
Decline:
Conversion to AD
MMSE decline ≥ 3 pts/yr
MMSE ≤ 24

<table>
<thead>
<tr>
<th></th>
<th>Crude</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>p</td>
</tr>
<tr>
<td>MCI A+N-</td>
<td>1.13 (0.49 - 2.62)</td>
<td>0.771</td>
</tr>
<tr>
<td>MCI SNAP</td>
<td>2.66 (1.20 - 5.93)</td>
<td>0.016</td>
</tr>
<tr>
<td>MCI A+N+</td>
<td>3.85 (1.91 - 7.78)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Carolí et al. Neurology 2015
Neuropathological Diagnoses in Low Amyloid Clinical AD (N=50)

Dementia onset late 70s, death mid 80s

ApoE4 – 26%

Most common diagnoses:
AD (8), VaD (8), DLB (5), HS (5), normal brain (5) FTLD (4)

PART not diagnosed but 44% had Braak III/IV

Monsell et al. JAMA Neurol 2015

Table 4. Primary NP Diagnosis for No to Sparse CERAD Neuritic Plaque Density in APOE4 Carriers and Noncarriers

<table>
<thead>
<tr>
<th>Primary NP Diagnosis</th>
<th>Braak Stages 0-II</th>
<th>Braak Stages III-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APOE4 Noncarriers</td>
<td>APOE4 Carriers</td>
</tr>
<tr>
<td>Normal brain</td>
<td>3 (15.0)</td>
<td>0</td>
</tr>
<tr>
<td>AD</td>
<td>0</td>
<td>2 (28.6)</td>
</tr>
<tr>
<td>AD abnormality present but insufficient for diagnosis</td>
<td>2 (10.0)</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Lewy body disease</td>
<td>3 (15.0)</td>
<td>0</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>5 (25.0)</td>
<td>0</td>
</tr>
<tr>
<td>FTLD</td>
<td>2 (10.0)</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Hippocampal sclerosis</td>
<td>3 (15.0)</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Rosenthal fiber encephalopathy</td>
<td>1 (5.0)</td>
<td>0</td>
</tr>
<tr>
<td>Nigral degeneration with focal tauopathy</td>
<td>1 (5.0)</td>
<td>0</td>
</tr>
<tr>
<td>Tauopathy NOS</td>
<td>0</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Progressive supranuclear palsy</td>
<td>0</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Senile dementia with tangles (tangle-only dementia)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FTD-NFT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tauopathy/diffuse grain disease</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
CTE at Autopsy in Aβ-PET Negative AD

79 year-old retired NFL player with progressive memory loss
Heterogeneity of Aβ+ AD

FDG - PET

Controls > EOAD

Controls > LOAD

Lehmann et al. Brain 2013
Tau PET Patterns Correlate with AD Phenotype

LOAD (n=4)

EOAD (n=8)

PrPPA (n=7)

PCA (n=8)

Ossenkoppele et al. Brain 2016
Xia et al. JAMA Neurol 2017
Day et al. Alz Dis Assoc Disord 2017

Covaried for age, p(FWE)<0.05
Age Moderates Tau Pattern in AD

A

AGE

Younger age, increased 18F-AV1451

Older age, increased 18F-AV1451

$\tau = 0.54 \ (P=0.001)$

Ossenkoppele et al. Brain 2016
Tau Burden in AD is Negatively Correlated with Age
Longitudinal Tau PET in EOAD

Visit 1
Nov. 2015

Visit 2
Conclusions

• Biomarkers identify patients with non-Aβ pathologies mimicking clinical AD
 • Consistently ~15% of AD dementia
 • Associated with ApoE4 neg, older age, male
 • Better prognosis than Aβ+ (but not benign)
 • Likely represents a mix of neuropathologies
 • PART, CARTS, AGD, vascular, DLB

• Biomarkers can identify AD pathology as cause of heterogeneous syndromes
 • Early-onset AD critical and under-studied cohort in which to investigate mechanisms that drive heterogeneity
 • Dedicated study will require multi-site collaborations
UCSF-MAC
Bruce Miller
Rik Ossenkoppele
Nagehan Ayakta
Viktoriya Bourakova
Alexandre Bejanin
Leonardo Iaccarino
Renaud La Joie
Ashley Mensing
Julie Pham
Daniel Schonhaut
Richard Tsai
Gautam Tammewar
Adrienne Visani
Adam Boxer
Lea Grinberg
Marilu Gorno-Tempini
Anna Karydas
Robin Ketelle
Joel Kramer
Zach Miller
Howie Rosen
Miguel Santos
Salvatore Spina
Bill Seeley
Mike Weiner

UC Berkeley/LBNL
Bill Jagust
Susan Landau
Jim O’Neill
Kris Norton
Mustafa Janabi
Suzanne Baker
Sam Lockhart

Avid
Mark Mintun
Andrew Siderowf
Marybeth Howlett

IDEAS Study team
Maria Carrillo
Constantine Gatsonis
Bruce Hillner
Barry Siegel
Rachel Whitmer
Charlie Apgar
Lucy Hanna
Jim Hendrix
Cynthia Olson

Funding
NIA R01-AG045611, P01-AG1972403, P50-AG023501
NINDS U54NS092089
Tau Consortium
Michael J. Fox Foundation
AFTD
Alzheimer’s Association
Avid Radiopharmaceuticals
American College of Radiology
French Foundation
Cognitive Trajectories By Aβ Status

Landau et al., Neurology 2016
Characterization of Aβ- MCI/AD in ADNI

- Slightly older than Aβ+ (AD only)
 - Mean age 78 vs. 74
- Lower ApoE4
 - MCI: Aβ- 16% vs. Aβ+ 71%
 - AD: Aβ- 4% vs. Aβ+ 75%
- Better baseline cognition and function (MCI only)
- Slower cognitive decline (both groups)
- Higher prevalence of depression and hypertension
- Lower neurodegeneration biomarkers
 - CSF t-tau; p-tau, baseline MRI and FDG, longitudinal MRI
Atrophy in Aβ-Neg AD Dementia

Chételat et al, in revision
Conclusions

• SNAP is a biomarker-derived construct
 • Subject to limitations of biomarker distributions, thresholds and classifications
 • Current definition of “neurodegeneration” is cross-sectional, not longitudinal
• The biological substrate of SNAP is likely diverse
 • Non-degenerative: developmental differences, age, depression, hormonal (estrogen, cortisol), sleep, diabetes, genetics, etc.
 • Degenerative: vascular, DLB, PART, AGD, HS ± TDP-43, FTLD
Conclusions

• The prognosis of SNAP differs by baseline cognitive status
 • Healthy elderly: relatively benign (similar to A-N-)
 • MCI: intermediate between A-N- and A+N+
 • Dementia: majority show continued decline

• The substrate of SNAP likely differs by baseline cognitive status
 • Healthy elderly: greater contribution of non-degenerative factors (or very slow pathologies)
 • Dementia: primarily non-AD cortical/subcortical (non-amnestic) or limbic (amnestic) pathologies
 • MCI: mix of degenerative vs. non-degenerative
Outcomes in Clinical AD Dementia with Negative Amyloid PET

Amnestic: primary and predominant deficit in episodic memory

Non-amnestic: primary and predominant deficit in language, visuospatial, or executive functions

Non-specific: diffuse pattern of cognitive deficits

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
<th>Probable AD</th>
<th>Non-amnestic Aβneg-AD</th>
<th>Non-specific Aβneg-AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BEFORE the amyloid PET scan (n=40)</td>
<td>Amnestic Aβneg-AD (n=21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>AFTER the amyloid PET scan (n=37)</td>
<td>Probable AD (n=11)</td>
<td>FTD (5)</td>
<td>DLB (1)</td>
</tr>
<tr>
<td>C</td>
<td>Long-term diagnosis (n=29)</td>
<td>Probable AD (n=8)</td>
<td>MCI unk (1)</td>
<td>Psychotic (1)</td>
</tr>
<tr>
<td>D</td>
<td>Autopsy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probable AD diagnosis:
- Probable AD: Orange
- Probable AD diagnosis change: Orange

Missing information: Black

Diagnosis change from previous diagnosis: Light Orange

Chételat et al., Brain 2016
Agreement Between CSF Aβ$_{42}$ and Florbetapir PET

Landau et al., Neurology 2016
Early Tau PET Data Suggest SNAP ≠ PART

Mormino et al, JAMA Neurol 2016
Intermediate Risk of Cognitive Decline in MCI-SNAP

Caroli et al, Neurology 2015

Vos et al, Brain 2015
Intermediate Risk of Cognitive Decline in MCI-SNAP

Caroli et al, Neurology 2015
Vos et al, Brain 2015
Early-Onset AD (Age ≤ 65)

- 5% of all AD patients = ~250,000 in U.S.
 - Only ~5%-10% harbor APP/PSEN mutations
- Study mechanisms of heterogeneity and selective vulnerability in AD
 - Non-amnestic clinical presentations; focal cortical syndromes (lvPPA, PCA, fvAD)
- Identify novel genetic risk factors
 - Only ~50% carry ApoE4
 - Not represented in GWAS; will require targeted effort
- Employ biomarkers
 - Improve clinical diagnosis
 - Study mechanisms of “pure” AD: fewer co-pathologies
 - Under-represented in ADNI, not included in DIAN