Cerebrovascular Markers in Alzheimer’s Disease Quantifiable with 4D Flow MRI

Leonardo A. Rivera-Rivera
Research Associate
Department of Medical Physics
University of Wisconsin-Madison

https://www.medphysics.wisc.edu/~kmjohnso/
Alzheimer’s disease and cerebrovascular disease

- Cerebrovascular disease manifests in AD but is also an independent cause of dementia.

- AD – CVD hypotheses need testing:
 - Additive, causative, AND/OR combinatorial effects?
 - Will CVD biomarkers improve early diagnosis?

- Need for CVD biomarkers in longitudinal studies of subjects at risk of AD
 - Push to incorporate vascular dysfunction into the AT(N) biomarker system (Responses to the 2018 NIA-AA Research Framework [1,2])
 - Potential for MRI biomarkers of CVD

Neuroimaging of cerebrovascular disease using 4D flow MRI

- 4D flow MRI enables both volumetric angiographic and quantitative assessment of blood flow velocities in a single acquisition
- AD patients showed decreased blood flow
 - low blood pressure
 - elastic arteries
 - neuron loss -> decreased metabolism

https://www.medphysics.wisc.edu/~kmjohnso/
Intracranial PWV

- AD patients or at risk of AD will likely get an MRI
- 4D flow MRI:
 - blood flow, pulsatility, intracranial pulse wave velocity and other markers of vascular health
Study population recruited from WADRC clinical core

- Total number of subjects for this study = 192
- 5 groups

<table>
<thead>
<tr>
<th></th>
<th>AD (n=42)</th>
<th>MCI (n=37)</th>
<th>Older Cognitively healthy (n=50)</th>
<th>Impact (n=29)</th>
<th>Younger cognitively healthy (n=34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>71 ± 9</td>
<td>73 ± 9</td>
<td>73 ± 7</td>
<td>58 ± 3</td>
<td>57 ± 5</td>
</tr>
<tr>
<td>Sex (# females, %)</td>
<td>25, 60</td>
<td>20, 54</td>
<td>28, 56</td>
<td>21, 72</td>
<td>26, 76</td>
</tr>
<tr>
<td>Parental dementia history positive (# positive, %)</td>
<td>18, 43</td>
<td>19, 51</td>
<td>3, 6</td>
<td>29, 100</td>
<td>0, 0</td>
</tr>
<tr>
<td>APOE ε4 positive (# positive, %)*</td>
<td>16, 46</td>
<td>16, 57</td>
<td>0, 0</td>
<td>29, 100</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

https://www.medphysics.wisc.edu/~kmjohnso/
Statistically higher PWV in AD and MCI compared to controls

- Higher PWV in the AD group suggests arterial stiffening of the internal carotid arteries and macrovascular damage

https://www.medphysics.wisc.edu/~kmjohnso/
Statistically higher PWV in APOE ε4 carriers healthy adults

- Higher PWV in the Impact group suggest vascular changes are occurring in a group of otherwise healthy individuals
 - need for longitudinal assessment

https://www.medphysics.wisc.edu/~kmjohnso/
Pathology and age effects

- AD accelerates aging effect
- PWV increases with age in healthy adults
- PWV needs to be correlated pathologic biomarkers associated with AD such as:
 - amyloid burden,
 - tau pathology
 - brain atrophy

https://www.medphysics.wisc.edu/~kmjohnso/
Acknowledgements

Wisconsin Alzheimer’s Disease Research Center:
- Sterling C. Johnson
- Cindy Carlsson
- Paul Cary
- Chuck Illingworth
- Karly Cody

Funding Sources:
- NINDS NIH R01NS066982
- NIA NIH P50AG033514
- NIA NIH R01AG021155

UW-Madison MRI Flow Group:
- Kevin M. Johnson
- Oliver Wieben
- Laura Eisenmenger
- Jacob Macdonald
- Carson Hoffman
- Dahan Kim
- Philip Corrado
- Chenwei Tang
- Grant S Roberts
- Mulan Jen
- Zachary Miller
- Daniel Seiter

Thank You